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ABSTRACT 

 

Targeting unique domains of LSD1 regulates pediatric glioma innate immunity and NK 

cell metabolism 

  

Cavan Paul Bailey, B.A. 

 

Advisory Professor: Joya Chandra, Ph.D. 

 

 

 

 Regulation of chromatin accessibility is a key mechanism of cellular identity, 

allowing different tissues to develop using the same DNA template. Cancers will often 

hijack these epigenetic pathways, reactivating developmental genes to drive growth and 

deactivating tumor suppressor and immune recognition genes. Chromatin-modifying 

proteins deposit and remove chemical moieties from histone tails to aid in governing 

gene expression, and these proteins have become a new therapeutic target in cancer. 

Traditional chemotherapeutics aim to damage DNA, dysregulate cell division, or block 

hormonal growth signals, but epigenetic therapy can target vulnerabilities specific to 

cancer cells and broadly change gene expression patterns that may aid new modalities 

such as immunotherapy. 

Pediatric high-grade gliomas (pHGGs) often possess mutations in histone coding 

genes that cause aberrant histone methylation and gene expression. Cells derived from 

these patient’s tumors display growth inhibitory sensitivity to epigenetic drugs targeting 

histone deacetylases and methyltransferases, but other epigenetic targets remain 

unexplored in this cancer. The histone demethylase LSD1 (also known as KDM1A, 

BHC110, and KIAA0601) has been revealed as a promising target in leukemias and 
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pediatric sarcomas, but its validity as a cancer target in pediatric glioma is unknown. 

LSD1 can be inhibited by small molecules with unique mechanisms of action, binding to 

either the catalytic site directly, or to an allosteric interface region. These LSD1 

inhibitors produce differing effects in various cell types, dependent on LSD1-interacting 

proteins and how these interactions are disrupted by inhibitor binding.  

Through testing of a suite of catalytic and scaffolding LSD1 inhibitors, I have 

revealed LSD1 as an immune-regulatory target in pHGG, and as a potential mediator of 

metabolism and redox balance in natural killer (NK) cells. Furthermore, using 

bioinformatics approaches, I reveal differences in pHGG immune infiltrate by tumor 

location that may govern future treatment with LSD1 inhibitors or other 

immunostimulatory agents. This thesis collectively demonstrates that LSD1 is a valid 

therapeutic target in pHGG, and that inhibiting distinct structural domains of LSD1 

boosts innate immune reactivity in pHGG and modulates the metabolism and oxidative 

stress of NK cells. My work sets the stage for clinical translation of a combination pHGG 

therapy using an LSD1 inhibitor with NK cell infusion. 
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Introduction 

Discovery, structure, and function of LSD1 

Discovery of LSD1 

Histones are DNA-interacting proteins that package the double helix DNA strand 

into a compact structure in a cell’s nucleus. Gene regulation can be governed by this 

higher order chromatin structure, with “open” chromatin being more accessible than 

“closed” or tightly-packed chromatin. While histones serve a structural role in chromatin 

packaging, they also are regulatory, with post-translational modifications able to 

influence gene expression by recruiting transcription factors and changing chromatin 

shape. These tails are modifiable at conserved amino acid residues by acetylation, 

methylation, phosphorylation, ubiquitination, and several other chemical modifications. 

Histone acetylation by histone acetyltransferases (HATs) and histone deacetylases 

(HDACs) was first delineated by the isolation of the HAT GCN5/KAT2A (1) and HDAC1 

(2) in 1996. These opposing enzymes function dynamically to regulate acetylation 

marks that repel one another and “open up” chromatin regions. Histone methylation was 

known to exist, but it was unknown if it could be removed by enzymes akin to HDACs. 

The lab of Yang Shi at Harvard Medical School was the first to functionally describe a 

histone demethylase, at the time called KIAA0601 and BHC110, but renamed lysine-

specific demethylase 1 or LSD1 (3). They identified it as related to amine oxidases, with 

which LSD1 shares a common chemical mechanism for demethylation, which requires 

flavin adenine dinucleotide (FAD) as a cofactor and produces hydrogen peroxide and 

formaldehyde as byproducts (Fig 1). They also made the important discovery of 
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substrate specificity, in which LSD1 can only demethylate di-methylated histone 3 lysine 

4 (H3K4me2) and not the trimethylated form.  

LSD1-interacting proteins 

The Shi lab later identified HDAC, CoREST, and BHC80 as interacting proteins 

with LSD1 that could regulate its activity (4) (Fig 1). HDACs were necessary to 

deacetylate histones ahead of LSD1 binding, which was weaker with hyperacetylated 

histones. CoREST was an important stabilizing factor, preventing LSD1 proteasomal 

degradation and stimulating LSD1 activity. BHC80, meanwhile, has repressive activity 

towards LSD1. CoREST’s positive regulation of LSD1 binding to nucleosomes was 

shown by the Shiekhattar group, which also identified lysine-661 as a key residue 

needed for LSD1 demethylase activity (5). The same group later showed that LSD1 

activity cooperates with HDAC1 activity via physical interaction with CoREST (6). 

Although LSD1 can normally only demethylate H3K4, it was found that LSD1 can 

complex with androgen receptors to change its specificity to H3K9 (7). Other key 

interacting proteins of LSD1 were found to be GFI1 and the related GFI1b, which 

required the SNAG domain to complex with LSD1 and CoREST (8) (Fig 1). Methylation 

of the SNAG domain at lysine-8 on GFI1 controlled its binding to LSD1 (9). Notably, it 

was found that LSD1 can also demethylate non-histone substrates, including the tumor 

suppressor p53 (10, 11). Long-noncoding RNA, or lncRNA, were seen to bridge the 

LSD1 complex with the histone methyltransferase PRC2 complex (12).  

Structural domains of LSD1 
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An LSD1 crystal structure was published in 2006, defining 3 main domains: 

tower, SWIRM, and amine oxidase (13). The SWIRM domain is separate from the 

active site but is critical to catalytic activity, so it was hypothesized to serve as a 

stabilizing domain. The amine oxidase domain binds cofactor FAD and histone tails to 

catalyze the demethylation reaction. In addition, the oxidase domain was shown to be 

the region that SNAG domains bind to LSD1 (Fig 1). These SNAG domains are present 

on Snail1 (14, 15), GFI1 (8), and other transcription factors and regulates their 

positioning on the genome. The tower domain was shown to interact with complex 

member protein CoREST (16), and CoREST binds to DNA via its SANT2 domain which 

specifies and regulates LSD1 demethylase activity (17) (Fig 1). The tower and oxidase 

domains play unique roles in different tissue types, which will be explored in sections 

below. 

LSD1 in development and hematopoiesis 

Epigenetic signaling is key to normal mammalian development, as each contains 

the same DNA sequence but must differentiate into many unique cell types. LSD1 was 

implicated in gastrulation during mouse embryogenesis, and embryos deleted for LSD1 

do not survive. Mechanistically this was mediated by LSD1 demethylating DNMT1, 

increasing DNMT1 stability, and enabling normal DNA methylation to be inherited during 

cell division (18). Mouse embryonic stem cells deleted for LSD1 were able to proliferate 

normally, as LSD1 is required only in the epiblast stage. The LSD1-null embryonic cells 

possessed lower expression of CoREST and alterations in expression of limb patterning 

genes (19). Developmental transcription factors NANOG and OCT4 were regulated by 

LSD1 maintenance of H3K4 methylation with H3K27 methylation (20). This was further 
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defined with functions of LSD1 in binding to enhancers during development (21). In the 

brain, neuro-specific isoforms of LSD1 are involved in normal neural development, 

particularly of neurons (22). Neural precursor cells were found to be reliant on LSD1 

activation of Atrophin1 to become mature neurons (23). Inner ear progenitor cells also 

require LSD1 to interact with transcription factor cMyb to develop normal ear function 

(24).  

LSD1 was implicated in normal blood function as a cooperative member, along 

with the Blimp-1 transcription factor, in plasma cell differentiation from mature B-cells 

(25). GFI1 and GFI1b are transcription factors involved in red blood cell (RBC) 

(erythropoiesis) and platelet (megakaryopoiesis) production, and they were found to 

cooperate with the LSD1 complex to direct gene expression and maturation of RBC and 

platelet progenitors (8, 26). This interaction would later be found to be vitally important 

for therapeutically targeting LSD1 in blood cancers, which is detailed in the next 2 

sections (Fig 1). Two landmark papers were published in 2012 and 2013 using LSD1 

knockout mouse models that examined hematopoiesis in detail. An inducible LSD1 

knockdown model displays lack of LSD1 in all tissues, and produced expansions of 

granulocyte, RBC, and platelet progenitors but contraction of mature versions of these 

cell types (27). Notably, this phenotype could be reversed by LSD1 re-expression. A 

following report used a tissue-specific knockout of LSD1 that deleted the catalytic site of 

LSD1 in the hematopoietic system. Compromised development of both early and late 

hematopoietic cells was observed, and use of chromatin-immunoprecipitation 

sequencing showed LSD1 could no longer bind to and silence promoters and 

enhancers required for normal development (28). Later it was shown that 
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overexpression of LSD1 in hematopoietic stem cells could “prime” them for malignant 

transformation when subjected to radiation (29). LSD1 silencing of endothelial genes in 

the aorta–gonad–mesonephros region was shown to be required for the earliest 

emergence of hematopoietic stem cells from transient hemogenic endothelium (30). B-

cells were again tied to LSD1, both in plasma cell differentiation mechanisms (31) and 

marginal zone B-cell development (32). A detailed study found that the tower domain of 

LSD1, but not its catalytic activity, was needed for germinal center B-cell development 

by direct interactions with BCL6 at intergenic enhancers (33). This finding shows that 

LSD1 plays lineage-specific roles in the hematopoietic system, with the catalytic 

domain-GFI1 interaction needed for RBCs and platelets, and a tower domain-BCL6 

interaction needed for B-cells.  
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Fig 1. Protein model of LSD1 in complex with CoREST, GFI1, and co-factor FAD. 

PyMOL was used to generate images for export, which was further labeled in 

PowerPoint. LSD1 in complex with CoREST and SNAG domain was visualized using 

Protein Data Bank accession 2Y48. GFI1 in complex with DNA was visualized using 

Protein Data Bank accession 2KMK.  
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Role of LSD1 in cancer 

LSD1 in leukemias 

The earliest report of LSD1 playing a functional role in leukemia is a 2009 report 

of LSD1 interacting with transcription factor TAL1 as part of its greater complex 

(LSD1/CoREST/HDAC1/HDAC2). They found that TAL1 in association with this 

complex can circumvent differentiation programs to erythroid cells and maintain a stem-

like state in murine erythroleukemia (34). A later finding was that serine 172 on TAL1 

was critical to the TAL1-LSD1 interaction and was mediated by protein kinase A (PKA) 

(35). In 2012, two instrumental papers were published showing that LSD1 is a valid 

therapeutic target in acute myeloid and MLL-AF9 fusion leukemias, using LSD1 

inhibitors to block LSD1 demethylase activity (36, 37) (inhibitors discussed in detail in 

next section). CD86 expression was soon after proposed as a reproducible biomarker of 

LSD1 inhibition in leukemias (38). Combination therapy of an LSD1 inhibitor with HDAC 

inhibition was shown to be efficacious against acute myeloid leukemia (39). MLL-

rearranged leukemias were sensitive to combination of LSD1 and DOT1L (an H3K79 

methyltransferase) inhibitors (40). The most recent reports examining combination 

therapies with LSD1 inhibition include use of DNA methyltransferase inhibitors (41), 

bromodomain inhibitors (42), and mTORC1 inhibition (43). 

In the past few years, multiple reports have shown that interactions with genomic 

elements are critical to the efficacy of LSD1 inhibition in leukemias, particularly 

regulation of enhancers and transcription factors. Takeda Pharmaceuticals developed 

an LSD1 inhibitor (T-3775440) that disrupts the LSD1-GFI1 interaction and was 

particularly effective against erythroid and megakaryoblastic leukemias (44). Activation 
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of super enhancers, which was dependent upon GFI1 presence, was the genomic 

mechanism of LSD1 inhibitor NCD38 efficacy in multiple leukemia subtypes (45). 

Recently it was further discovered that the LSD1-CoREST-HDAC complex can 

transcriptionally regulate GFI1 by binding to a GFI1 super enhancer (46). Enhancer 

activation under LSD1 inhibition was later shown to be directly dependent on GFI1-

LSD1 disruption, acetylation of histones around enhancers, and subsequent reading of 

histone acetylation by bromodomains (47). Differentiation of MLL-rearranged leukemia 

after treatment with LSD1 inhibitor was dependent upon the transcription factors PU.1 

and C/EBP-alpha (48). This finding was confirmed by another group, who also found 

that a catalytic-null form of LSD1 can induce differentiation of leukemia cells but not 

extend survival of mice (49). A hypothesis for this is that catalytic inhibitors block GFI1-

LSD1 associations, previously shown to be crucial for anti-leukemic effects, but a 

mutation in the catalytic site will not produce the same phenotype. A non-catalytic LSD1 

inhibitor SP-2509, discussed in detail in the next section, did not induce differentiation 

but was potently cytotoxic in vitro. CRISPR suppressor scanning of LSD1 later 

confirmed that its interaction with GFI1 is needed for efficacy of catalytic LSD1 

inhibitors, and the charged phenylalanine-5 residue of GFI1 controls disruption of GFI1-

LSD1 binding under inhibitor treatment (50).  

LSD1 in solid tumors 

Early clues to the role of LSD1 in maintenance and development of solid cancers 

was shown by the ability of LSD1 knockdown and inhibition to slow growth and induce 

differentiation of neuroblastoma (51). LSD1 was positively prognostic in breast cancer 

where it could reduce metastasis as a member of the NuRD complex (52). Despite this 
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finding, it was found LSD1 inhibitors were synergistic with HDAC inhibitors in breast 

cancer (53), as well as adult gliomas (54, 55). LSD1 inhibition reduced epithelial-to-

mesenchymal transition by blocking the SNAG-domain association of SLUG with LSD1 

(56). Stem cell factor SOX2 was seen to be a factor of sensitivity to LSD1 inhibition in 

cancer (57). LSD1 and SOX2 were implicated in glioblastoma development by an 

LSD1-MYC-SOX2 axis (58). The oncogenic fusion proteins EWS/FLI and EWS/ERG in 

Ewing sarcoma drive transcriptional programs that can be suppressed with LSD1 

inhibition (59, 60). LSD1 was found to be a key modulator of tumor progression in 

medulloblastoma (by its GFI1 interactions) (61) and small cell lung cancer (by its 

repression of NOTCH pathway) (62).  

Therapeutic targeting of LSD1 

LSD1 inhibitor development 

LSD1 inhibitors have been designed in many permutations, with the most 

common being relatively simple small molecules targeted to the catalytic site of LSD1 

(63). Other forms can include complex molecules (64), natural products (65, 66), and 

protein mimetics (67, 68), but these will not be expanded upon as they have not 

progressed into detailed pre-clinical studies or clinical trials.  

The earliest discovered LSD1 inhibitor was tranylcypromine, also called Parnate, 

2-PCPA, or TCP, a monoamine-oxidase inhibitor commonly prescribed as a psychiatric 

medication (69). The potency and selectivity of TCP for LSD1 versus monoamine-

oxidases A (MAOA) and B (MAOB) is poor, with TCP being >10X more selective for 

MAOs versus LSD1 and with a poor inhibitory constant (Ki) for LSD1 of several hundred 
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micromolar (µM) (70). As such, TCP must be dosed in the millimolar (mM) range to 

achieve desired effects of blocking LSD1 binding to H3 tails or other targets when used 

in cell culture (Fig 2). Derivatives of TCP with greater selectivity started to appear in 

press in 2010 (70), and were followed by a TCP derivative with hypothesized brain-

penetrant capabilities in 2012 (71). Also published that year, TCP and related 

compounds showed in vivo activity against leukemia xenografts, either as a potent TCP-

derived single agent (36) or TCP in combination with all-trans retinoic acid (ATRA) (37). 

Interestingly, the single agent TCP-derivatives produced thrombocytopenia and anemia 

in mice (36), foreshadowing publications to come in 2012/2013 (27, 28) that defined the 

role of LSD1 in hematopoiesis. In 2015, pharmaceutical company GlaxoSmithKline 

(GSK) published their potent catalytic LSD1 inhibitor, GSK LSD1 and its in vivo 

counterpart GSK2879552, showing activity in small-cell lung cancer (SCLC) and acute 

myeloid leukemia (AML) (72) (Fig 2). 

A new biochemical mechanism of LSD1 inhibition was discovered in 2013, when 

the benzohydrazide compound 12 was published, which would later become known as 

HCI-2509 or SP-2509 (73). Excellent potency (Ki = 31nM) and selectivity over MAOs 

was demonstrated as well as preliminary in vitro activity against cell lines (Fig 2). The 

following year, SP-2509 was shown to be effective in vitro and in mouse models when 

combined with HDAC inhibitors against AML (39), and as a single agent for Ewing 

sarcoma (60, 74), endometrial carcinoma (75), neuroblastoma (76), and prostate cancer 

(77). Fiskus et al found that SP-2509 can block the association of LSD1 with its complex 

member CoREST, suggesting an allosteric binding mechanism that may generate 

biological effects beyond catalytic inhibition. Developed resistance to SP-2509 does not 
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involve mutations in LSD1 but does result in decreased CoREST expression, 

suggesting CoREST is at least partially required for SP-2509 efficacy (78). 

Computational docking confirmed the allosteric binding mechanism of SP-2509, 

displaying binding of the compound at a rotational interface between the amine oxidase 

domain and the tower domain (79). These authors also found that SP-2509 causes 

LSD1 protein instability and blocks LSD1 interactions with zinc-finger 217 (ZNF217), 

which were shown to be critical to the anti-tumor effect in prostate cancer. Notably, use 

of potent catalytic inhibitors did not recapitulate these effects (79). Others have noted 

the possibility of off-target effects of SP-2509 through biochemical screens (80) and 

cell-based LSD1 knockouts (81). 
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Fig 2. Structures and properties of LSD1 inhibitors used in dissertation. Information 

includes originating intellectual property owner, name of compound, mechanism of 

action, and inhibition constants (Ki) for LSD1 and related monoamine oxidases. Red 

boxes highlight common TCP-backbone of GSK LSD1 and RN-1. Clinical trial 

information is provided for SP-2577 (seclidemstat), current as of August 2020.  
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Several of the above agents have moved into clinical trials, mostly for 

hematological malignancies or defects, but also a handful in solid tumors (82). A potent 

catalytic inhibitor from Spain, ORY-1001, shows promising efficacy in an AML trial (83). 

TCP is in trials for AML as well, though already FDA-approved as a psychiatric 

medication. Imago Bioscience’s IMG7289, another catalytic inhibitor, was recently fast-

tracked by the FDA for treatment of myelofibrosis. Other catalytic inhibitors from 

Celgene (now owned by Bristol Myers Squibb, BMS-90011) and Incyte (INCB059872) 

are in trials for lymphoma, SCLC, sickle cell disease, and broadly for solid tumors and 

myeloproliferative diseases. GSK2879552 trials were terminated due to unacceptable 

severe adverse events (SAEs) in a SCLC trial, primarily encephalitis (84). This has not 

been seen with other LSD1 inhibitors of a similar mechanism, suggesting GSK2879552 

may have unfavorable unique properties. Notably, no clinical trials have cited dose 

limiting toxicities (DLTs) of anemia or thrombocytopenia as seen in mouse models, 

therefore early worries of a narrow therapeutic window and hematological toxicities for 

LSD1 inhibitors are abated. The clinical successor to SP-2509, Seclidemstat or SP-

2577, is also in trials for solid tumors and Ewing sarcoma. 

LSD1 as an immuno-regulator 

LSD1 was first tied to immune responses in 2012 with a report showing that 

LSD1 knockdown or inhibition in breast and liver cancer cells will upregulate 

transcription of interleukins 1, 6, and 8 (85). Several years later in 2018, the immune 

role of LSD1 was confirmed in multiple publications. CD4 T-cells in rheumatoid arthritis 

mediate disease severity, and it was discovered that LSD1 knockdown reduces CD4 

proliferation and secretion of pro-inflammatory cytokines IL-17 and IFN-gamma in 
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patient cells and an arthritis mouse model (86). It was also found that LSD1 is 

suppressed in hematopoietic cells during toxic shock, allowing pathogenic myeloid cells 

to proliferate and kill the host. The downregulation of LSD1 was driven by micro-RNAs 

(miRs) and could be reversed with anti-miRs, allowing LSD1 to suppress the toxic shock 

syndrome (87).  

Two landmark papers following that tied LSD1 to immuno-oncology and 

combinations with immunotherapy. Yang Shi’s lab, whom discovered LSD1, 

demonstrated that LSD1 knockdown induces both transcription of endogenous retroviral 

elements (ERVs) and destabilizes the RNA-induced silencing complex (RISC), which 

then leads to dsRNA accumulation and a boosted immune response driven by 

upregulated MHC and PD-L1 in breast cancer and melanoma cells (88). This was 

followed by another report in breast cancer showing that inhibition of LSD1 also raised 

PD-L1 levels, and the authors described a mechanism based on increased expression 

of chemotactic cytokines that drew in T-cells from tumor blood vessels (89). The LSD1 

complex was further implicated in normal function of regulatory T-cells by deletion of 

CoREST, where CoREST knockout mice rejected bone marrow allografts, and notably, 

rejected tumors at a higher rate (90).  

Unifying hypothesis and research plan 

LSD1 has advanced from a biochemical curiosity to a validated cancer target in 

the span of 15 years. However, much remains to be discovered about its function and 

value as a therapeutic target in multiple cancers. As I have explored above, LSD1 plays 

diverse roles in different tissue types, governed by its interacting complex members and 

the “primed” state of the epigenome, which is itself regulated by many other histone 
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modifiers. Our lab has previously explored LSD1 inhibition in adult glioblastoma and 

found that cell lines are mostly insensitive to LSD1 inhibitors, but they can sensitize 

cells to HDAC inhibition (54, 55). As part of these investigations, RNA-Seq data was 

collected from cells with LSD1 knockdown compared to wild type. From this data we 

established pathways changed by LSD1 in adult gliomas, of which we sought to 

determine if LSD1 inhibition can be combined with other therapeutic modalities, given 

the lack of cytotoxicity from LSD1 inhibition alone. 

One of our top hits from pathway analysis was immune response, which included 

several cytokines, ligands, and antigen presentation genes. At this time (2015), little 

was known about LSD1 and immune pathways, and nothing was published on this 

effect in gliomas. Using this finding as a jumping off point, I hypothesized LSD1 

inhibitors could be used as immuno-stimulatory agents in gliomas. To dissect this 

hypothesis further, I will present my findings in 3 separate chapters addressing unique 

aims of the project: 

1. LSD1 inhibition as an immuno-stimulatory strategy in glioma 

i. Verification of LSD1 immune gene signature and relevance to 

pediatric v. adult gliomas 

ii. Use of LSD1 inhibitors with unique mechanisms of action 

iii. Combination immune therapies with LSD1 inhibitors 

iv. In vivo efficacy of LSD1 + cell therapy modalities 

2. Effects of LSD1 inhibition on cytotoxic immune cells 

i. Sensitivity of NK and T-cells to LSD1 inhibition 

ii. Metabolic effects of LSD1 inhibitors 
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iii. Oxidative stress effects of LSD1 inhibitors 

iv. Function of LSD1-inhibited NK cells 

3. Immune microenvironment of pediatric high-grade gliomas (pHGGs) 

i. Computational analysis of RNA-Seq using CIBERSORT to 

determine immune infiltrate 

ii. Immunosuppression in the pHGG microenvironment 

Collectively, these chapters establish LSD1 as an epigenetic immuno-repressor 

in pediatric gliomas, as well as a potential regulator of metabolism and redox balance in 

NK cells. Examination of clinical pediatric glioma sequencing data suggests that 

immuno-stimulatory therapies need to consider tumor location and immune cell type as 

important mediators of efficacy. The use of epigenetic therapies in cancer is complex, 

due to the varied function of epigenetic targets by tissue, cell identity within the tissue, 

and epigenetic state of that cell identity. Herein I have revealed new information about 

LSD1 and its interactions with the immune system, laying the foundation for future 

cancer therapies incorporating epigenetics, immunotherapy, and energy balance, which 

I will explore in the discussion section. 
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Materials and Methods 

Cells and human samples 

Human pHGG cells (DIPG IV, DIPG IV-luc, VI, and XIII) were grown in tissue 

culture-treated T75 flasks (BioBasic) in Tumor Stem Medium (TSM) Base, defined as 

50% DMEM/F12 medium (Corning) and 50% Neurobasal-A medium (Invitrogen) with 

1% NEAA/HEPES/sodium pyruvate/L-glutamine (Invitrogen). Before passaging or 

plating of cells, the following growth factors were added to TSM Base by volume: 2% 

B27 (Invitrogen), 0.1% of 0.2% heparin (StemCell Technologies), 20ng/mL EGF/bFGF 

and 10ng/mL PDGF-AA/PDGF-BB (all from Shenandoah Biotechnology). DIPG IV/VI 

cells were cultured as loosely adhered monolayers (IV) or colony-forming (VI) cultures 

and DIPG XIII cells were cultured as free-floating neurospheres. DIPG IV-luc cells were 

transfected with a mKate2-Firefly luciferase cassette, sorted for mKate2 positivity, and 

confirmed for luciferase luminescence on a plate reader. LN18 adult glioblastoma and 

NHA immortalized normal human astrocyte cells were grown as adherent monolayer in 

tissue culture-treated T75 flasks in DMEM/F12 medium supplemented with 10% fetal 

bovine serum (Corning) and 1% L-glutamine.  

All adherent or neurosphere cells were detached and/or dissociated with TrypLE 

during normal passage or Accutase during analysis or use in experiments. All cell lines 

were cultured without antibiotic and monitored for mycoplasma with MycoAlert PLUS 

(Lonza) with luminescence being read on a Synergy 2 plate reader (BioTek). Cell lines 

were cultured for an average of 3 months after being thawed, with mycoplasma testing 

done after thawing and prior to freezing to maintain myco-free stock, as well as 

periodically during experimental periods. 
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PKC-HA, PHC-HA, and PKC-luc murine cells are either H3.3-WT (PHC-HA) or 

H3.3-K27M (PKC-HA and PKC-luc) on a shared TP53-flox/PDGFRA-overexpression 

background initiated in Nestin(+) neural stem cells in C57BL/6 mice as previously 

published by Oren J. Becher. PKC and PHC cells were cultured in T75 flasks in Mouse 

& Rat NeuroCult media (StemCell Technologies) with the following growth factors 

added fresh at each passage: 10% NeuroCult proliferation supplement (StemCell), 20 

ng/mL human FGF and EGF (Shenandoah), and 2 mg/mL heparin (StemCell). PKC-luc 

were transfected with luciferase by Javad Nazarian and additionally cultured in 0.5 

µg/mL puromycin to maintain stable luciferase expression. NHA cells were additionally 

cultured with 0.5 µg/mL puromycin (Sigma) and 10 µg/mL blasticidin (Cayman 

Chemical) to maintain a transformed E6/E7/TERT-overexpressing phenotype. 

Human ex vivo expanded NK cells were previously isolated from de-identified 

healthy donor peripheral blood mononuclear cells (PBMCs), expanded with feeder cells, 

and cryopreserved as stocks in liquid N2. Expanded NK cells were cultured in RPMI 

(Corning) supplemented with 10% FBS (Genesee Scientific) + 1% of each of the 

following: penicillin/streptomycin (HyClone), NEAA (Lonza), L-glutamine (Sigma), 

sodium pyruvate (Lonza), and HEPES (ThermoFisher). 100 U/mL IL-2 was added to NK 

cultures every 3 days as needed. Human T-cells were isolated from healthy donor 

PBMCs using the EasySep Human T-cell Isolation Kit, cultured in ImmunoCult-XF T-cell 

Expansion Medium, and stimulated to grow with ImmunoCult Human CD3/CD28/CD2 T 

Cell Activator supplemented with 100 U/mL IL-2 (all from StemCell Technologies). K562 

cells were cultured in the same media as NK cells but without IL-2. 



www.manaraa.com

21 
 

Human cell lines DIPG, LN18, K562, and NHA cells were validated at least once 

per year by STR DNA fingerprinting using the Promega 16 High Sensitivity STR Kit 

(Catalog # DC2100). The STR profiles were compared to online search databases 

(DSMZ/ATCC/JCRB/RIKEN) of approximately 2500 known profiles; along with the MD 

Anderson Characterized Cell Line Core (CCLC) database of approximately 2600 know 

profiles. The CCLC core cannot validate mouse cells. 

Clinical datasets and bioinformatics 

The pHGG dataset published by Mackay et al was queried for a 13-gene 

signature identified from LSD1 knockdown RNA-Seq, and we performed supervised 

clustering on patients by using the expression of 8 of the 13 genes and expression of 

LSD1 (5 of the genes were not present in the dataset). With the clustering analysis, two 

distinct populations emerged with either low expression of the 8-gene signature (n = 

142) or high expression (n = 105). The expression of LSD1 is significantly correlated 

with the two subgroups with p-value at <0.0001 via unpaired T-test. Data for histone 

mutation status, anatomic location of the tumor, survival, and LSD1 expression were 

exported to Excel and GraphPad Prism for further analysis. Raw RNA-Seq from the 

dataset was input into CIBERSORT algorithm and output with the standard LM22 

matrix. Individual patients were segmented into H3-WT hemispheric tumors and H3-

K27M brainstem tumors for further analysis and matched to survival data. Midline and 

G34R/V hemispheric tumors were discarded from analysis due to lack of statistical 

power. CIBERSORT values per patient and immune cell type were classified as 

significant (p < 0.05), non-significant (p > 0.05), and undetectable (p-value could not be 

computed). 
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Mouse models of hemispheric pHGG and brainstem DIPG 

All experimental procedures were approved by the Institution Animal Care and 

Uses Committee (IACUC) at the University of Texas MD Anderson Cancer 

Center. NOD-SCID gamma (NSG) mice were intracranially bolted at 4 weeks of age 

and PKC-luc murine pHGG cells or DIPG IV-luc human DIPG cells were injected at 6 

weeks of age. 300,000 PKC-luc cells or 500,000 DIPG IV-luc cells were infused in 5 µL 

suspended in serum-free media without growth factors through the bolt and allowed to 

engraft for 1-2 weeks. Mice were injected 200 µL intraperitonially (IP) with vehicle (1.6% 

DMA, 5% EtOH, 45% PEG400, 48.4% PBS) or drugs resuspended in vehicle at the 

following doses: TCP (16 mg/kg), GSK LSD1 (1.6 mg/kg), and SP-2577 (16 mg/kg). 

Treatment was performed on a 4 days on/3 days off cycle to manage toxicity as 

suggested by collaborators at GSK. NK cells at a dose of 1,000,000 cells/mouse were 

infused through the cranial bolt in 5 µL suspended in serum-free RPMI weekly after 4 

days of treatment with LSD1 inhibitor. Luminescent images were captured following 

every cycle of treatment by anaesthetizing mice with 2.5% isoflurane, injecting with 3 

mg luciferin in a 200 µL subcutaneous dose, incubating for 5 mins, and imaging 

immediately on an IVIS 200 (PerkinElmer) for 1, 5, and 15 seconds. Images were 

normalized to a radiance range of either 500,000 to 10,000,000 (PKC-luc) or 50,000 to 

5,000,000 photons/sec/cm2 (DIPG IV-luc) for presentation. Total flux (photons/sec) was 

used to quantify tumor burden and plot data over time. 

C57BL/6 female mice of 8 weeks of age were anaesthetized via isoflurane at 

3.5% and foot pinch was used to confirm deep anesthesia. Using a scalpel, an incision 

was made on the top of the head to expose the skull. Mice were placed in a stereotactic 
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apparatus under anesthesia and a hole was drilled in the skull below the bregma and 

lateral to the sagittal suture at a depth of 2 mm. 500,000 PKC-HA murine DIPG cells in 

3 µL of PBS were injected to a 5 mm depth using a 10 µL Hamilton syringe at a rate of 

0.5 µL/min. After injection, the syringe was slowly retracted and the head was re-sealed 

with VetBond tissue adhesive. Mice were monitored for 1-2 hours post-surgery for 

normal walking gait and alertness. Mice were given Buprenorphine at 0.1 mg/kg via 

subcutaneous injection for the next 2 days post-surgery to alleviate pain. Tumor 

engraftment was allowed to proceed for 2 weeks, then mice began treatment by 200 µL 

intraperitoneal (IP) injection with PBS or drugs resuspended in PBS at the following 

doses: TCP (10 mg/kg) and GSK LSD1 (1 mg/kg). Treatment was performed on a 4 

days on/3 days off cycle. Mice were monitored for neurological symptoms including 

circling, head tilt, weight loss, and abnormal gait and were sacrificed if symptoms were 

severe. Brains were extracted and either flash-frozen in liquid nitrogen or fixed in 10% 

formalin solution (Sigma). Frozen brains were processed for RNA extraction using silica 

beads and sonication, while fixed brains were transferred to 70% EtOH for storage and 

subsequently processed into FFPE tissue blocks. Slide preparation and IHC was 

performed by the MD Anderson Smithville Pathology Core who confirmed tumor 

engraftment with core-validated Ki67 and user-provided HA-Tag (Cell Signaling) 

antibodies. Immunofluorescence staining was performed by the UT MD Anderson Flow 

Cytometry and Cell Imaging Core (Science Park, Smithville TX) with funding support 

provided by the CPRIT core facility grant RP170628. Slides were stained using NK1.1 

(BioLegend) and CD3 (Abcam) primary antibodies and AlexaFluor conjugated 

secondaries (ThermoFisher) combined with DAPI stain. Laser scanning confocal 
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microscopy was performed using a Zeiss LSM880 and 20X (0.8 NA) Plan/Apo objective 

with a pinhole aperture of 1-1.5 AU. Tile scans of the injected area were used to select 

tumor core, margin and adjacent stromal regions. For quantifications of infiltrating 

immune cells multispectral images were acquired at 2X zoom with a 212 mm2 field of 

view and quantified by eye. 

Cellular thermal shift assay (CETSA) 

At least 1 x 106 NHA or DIPG cells were plated in T75 flasks for each 

experimental condition and treated with LSD1 inhibitors for 1 hour. Cells were then 

harvested with TrypLE, washed in PBS, and resuspended in 200 µL cold CETSA wash 

buffer (defined as PBS with protease inhibitor cocktail added). 50 µL of each 

experimental condition were aliquoted into PCR strip tubes to make the melt curve. For 

LSD1, the temperatures were 42, 44, 48, and 52 C; this will vary for each protein being 

interrogated. Each set of aliquots was heated in a gradient thermocycler (BIO-RAD) for 

3 mins then cooled to 25C indefinitely. Strip tubes were immediately freeze/thawed in 

liquid nitrogen for 3 cycles to induce cell lysis. Lysates were spun down in a 

microcentrifuge at 12,000 RPM for 20 mins at 4C. Cleared lysates were either frozen at 

-80C or 15 µL was immediately loaded onto polyacrylamide gels for Western blot as 

described. 

NK and T-cell cytotoxicity co-culture 

For DIPG cell killing assays, DIPG target cells were grown under treatment 

conditions for defined times and doses, then harvested with Accutase and stained with 

calcein AM at 4 µM in NK cell media for 60 mins at 37C. Calcein AM-stained cells were 
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counted and plated in 96-well round bottom plates (Corning) at 50,000 cells/well, then 

NK or T-cells were added at defined effector-to-target ratios. 1% Triton-X (max lysis) 

and media only (background lysis) of target cells alone were included for each treatment 

condition. Plates were spun down at 100 x g for 1 min to initiate cell contact and then 

incubated for 4 hours at 37C. Following incubation, wells were mixed gently and plates 

then spun down at 100 x g for 5 mins, and 100 µL supernatant media was moved to 

clear-bottom, white-walled 96-well plates. Fluorescence was read at 485nm 

excitation/530nm emission on a Spectramax Gemini EM plate reader (Molecular 

Devices) with bottom read setting. Percent specific lysis was calculated by the formula: 

specific lysis = ((experimental release - background release) / (maximum release – 

background release)) * 100. 

For LSD1 inhibitor treatment of NK cells, effector NK cells were pre-treated for 

48h with LSD1 inhibitors (+ or – 2.5mM GSHee), counted on a ViCell XR analyzer, 

washed in PBS, and resuspended at 2 x 106 live cells/mL in supplemented RPMI. Cells 

were plated in a round-bottom 96-well plate in 100µL/well and serially diluted once to 

make 10:1 and 5:1 effector-to-target ratios in triplicate. Background wells were loaded 

with 100µL media only and maximum release wells were loaded with 100µL 2% Triton-

X in media. K562 cells were counted and resuspended at 1 x 106 live cells/mL and 

incubated with 5µM calcein AM for 1hr at 37C with mixing every 10 mins. After calcein 

AM loading, cells were washed in PBS, counted and resuspended at 2 x 105 live 

cells/mL and 100µL was added to each well of the plate. After centrifugation at 100 x g 

for 2 mins, the plate was incubated at 37C for 4hrs. After incubation, wells were gently 

mixed to distribute released calcein AM and the plate was centrifuged at 400 x g for 2 
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mins. 100µL of supernatant was transferred to a black opaque flat-bottom 96-well plate 

(Nunc) and fluorescence was read on a Synergy 2 plate reader (BioTek) with 485nm 

excitation/528nm emission filter set. Percent specific lysis was calculated by the 

formula: specific lysis = ((experimental release - background release) / (maximum 

release – background release)) * 100. 

Cellular metabolism assays 

NK and T-cells were pre-treated with indicated compounds for 48h, counted on a 

ViCell XR analyzer (Beckman Coulter), washed in PBS, and resuspended in Seahorse 

XF base DMEM (Agilent) supplemented with 10mM glucose (Sigma), 2mM L-glutamine, 

and 1mM sodium pyruvate. CellTak (Corning) was used to adhere 300,000 live cells per 

well in a Seahorse 96-well plate (Agilent) following manufacturer protocol. XF Mito 

Stress Test kit (Agilent) was used with 1µM oligomycin, 0.5µM FCCP, and 0.5µM 

rotenone/antimycin A with the standard injection protocol. Analysis was performed on a 

Seahorse XFe96 analyzer (Agilent) using Wave 2.6.1 software. 

Chemicals and antibodies 

The compounds tranylcypromine (TCP) (Enzo Biosciences), GSK LSD1, RN-1 

(Cayman Chemical), SP-2509 (EMD Millipore), lapatinib, dasatinib, imatinib, gefitinib 

(LC Labs), idelalisib, and alpelisib (BYL719) (Cayman Chemical) were purchased from 

the indicated vendors. SP-2577 was provided as both a free base formulation (in vitro) 

and mesylate formulation (in vivo) by Salarius Pharmaceuticals. Cyst(e)inase was 

provided by John Digiovanni, Ph.D. and the University of Texas at Austin. TCP was 

suspended in phosphate-buffered saline solution (PBS), while all other drugs were 
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suspended in dimethyl sulfoxide (DMSO) and aliquoted for storage at -20C. AlamarBlue 

was made from 2 g resazurin sodium salt (Sigma) resuspended in 500mL sterile PBS 

and stored at 4C as a 100x solution. GelGreen (Biotium) was stored in the dark at room 

temperature. D-Luciferin (GoldBio) was resuspended in sterile PBS and stored in 

aliquots at -20C. Glutathione ethyl ester (GSHee) (Cayman Chemical) was suspended 

in water and aliquoted at –20C. Trolox (Cayman Chemical) and mitoquinol (MQ) 

(Cayman Chemical) were suspended in DMSO and aliquoted at –20C. SKQ1 (Cayman 

Chemical) was provided in a 1:1 EtOH:H2O solution and diluted in cell culture media for 

experiments. Calcein AM (Cayman Chemical) was resuspended in DMSO and aliquoted 

at –20C. 

Antibodies for LSD1 (Abcam), β-Actin (Sigma), H3K4me2 (Cell Signaling), 

CoREST (MilliporeSigma), GFI1 (Santa Cruz), SLAMF7 PE (Biolegend), MICB APC 

(R&D Systems), CD3 FITC (BD Biosciences), CD56 PE (BD Biosciences), CD16 PE-

Cy7 (ThermoFisher), and NKG2D APC (ThermoFisher), and ULBP-4 Alexa 488 (R&D 

Systems) were used at manufacturer recommended dilutions for western blot or flow 

cytometry. Isotype antibodies matched to the species, class, and fluorophore were used 

in flow cytometry experiments.  

Drug screening 

All compounds were screened for efficacy against cells using 96-well flat-bottom 

plates (BioBasic) and AlamarBlue fluorescence as readout for live cell number or 

GelGreen fluorescence as readout for cell death. Cells were plated as single cell 

suspension at 2,000 cells/well (LN18/NHA/DIPG IV), 10,000 cells/well (DIPG VI/XIII), or 

20,000 cells/well (NK/T-cells) in 150µL of medium and were allowed to adhere overnight 



www.manaraa.com

28 
 

(LN18/NHA/DIPG IV) or were grown for 3-4 days until colonies (DIPG VI) or 

neurospheres (DIPG XIII) formed. Only the inner 60 wells of the plate were used; wells 

on the perimeter were filled with 200 µL PBS to control for edge effect. For treatment, 

drugs were diluted in medium to a 6X working stock, and 30 µL of the stock was added 

to the 150 µL of medium in each well for a total of 180 µL/well. For live cell counts, 

plates were incubated for 4 days, and 18 µL AlamarBlue was added at the end of day 4. 

On day 5, fluorescence was read at 540nm excitation/600nm emission on a Synergy 2 

plate reader with the bottom read setting. For cell death count, cells were plated in 

white-walled flat clear-bottomed 96-well plates (Grenier) and grown as above. GelGreen 

was added during drug treatment to a final concentration of 2X, and fluorescence was 

read at 485nm excitation/528nm emission as above. Using GraphPad Prism, dose 

responses were transformed to log scale and normalized to DMSO controls; a sigmoidal 

curve was plotted to calculate the median inhibitory concentration (IC50). 

Trypan blue, apoptosis, and cell cycle assays 

Cells were harvested with TrypLE, spun down, and resuspended in 800 µL PBS. 

500 µL of cells were analyzed for viability by TrypanBlue exclusion on a ViCell XR 

(BeckmanCoulter). The remaining 300 µL was fixed by adding 700 µL dropwise of ice 

cold 100% ethanol and storing at -20C. After a minimum of 24 hours, fixed cells were 

spun down, washed in PBS, and resuspended in a mixture of 300 µL PBS with 37.5 µM 

propidium iodide and 100 µg/mL of Ribonuclease A and incubated for 30 mins at RT in 

the dark. Cells were immediately analyzed on a Fortessa flow cytometer and 

G1/S/G2/M cell cycle phases and sub diploid DNA fragmentation were quantified in 

FlowJo. 
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Plate reader-based glutathione detection assay 

After desired incubations, cells were harvested with TrypLE and centrifuged at 

1700 RPM for 3 mins @ RT. Each experimental condition was resuspended in 1 mL 

PBS and 2 µL of a 50µM monochlorobimane (mBCL) solution (mBCL in acetonitrile) 

was added to each sample. 2 µL acetonitrile alone was added to the unstained control. 

Samples were vortexed and incubated at 37C for 30 mins. 50 μL of trichloroacetic acid 

was added and samples were spun for 5 min at 10,000 RPM @ RT. 1 mL of the 

resulting supernatant was added to a glass tube containing 1 mL dichloromethane. 

Glass tubes were vortexed and centrifuged for 2 min at 3,500 RPM @ RT. For each 

sample, 200 μL of the top aqueous layer was plated in duplicate wells in a black opaque 

96-well plate. Fluorescence was read on a BioTek Synergy 2 plate reader using the 

360nm excitation/460nm emission filter set.  

RNA isolation and RT-qPCR 

RNA was isolated using the RNeasy kit (QIAGEN) following manufacturer 

protocol. RNA was quantified on a Nanodrop 1000 spectrophotometer (ThermoFisher) 

and 500-1000 µg of RNA was reverse transcribed into 20 µL cDNA using the iScript 

cDNA synthesis kit (BIO-RAD). cDNA was diluted in template buffer (Biotium) by 2X, 

and 1 µL cDNA was plated in duplicate or triplicate on a 96-well qPCR plate (USA 

Scientific) mixed with 10 µL 2X Forget-Me-Not EvaGreen qPCR Master Mix, 8 µL 

nuclease-free water, and 1 µL of a 10 µM mix of forward and reverse primers for genes 

of interest. Primers are listed in supplementary table 1. Assay was run on a LightCycler 

96 instrument (Roche) using Biotium protocol and analyzed with LC96 software (Roche) 

to confirm amplification and single melt peaks. Ct values were exported and analyzed in 
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Excel using the 2-ΔΔCT method compared to DMSO controls. Fold changes were plotted 

in GraphPad Prism using multiple biological replicates. 

Flow cytometry 

Cells were harvested with Accutase after being treated for indicated time points 

and doses and washed with PBS in 5mL FACS tubes. Ghost Dyes Red 780 and Violet 

450 (Tonbo Biosciences) were diluted 1:9 (Red 780) and 1:4 (Violet 450) for use in 

50uL PBS/sample to stain cells for 10 mins at RT before addition of antibodies or other 

dyes. 50 µL of antibody mixture diluted in 2% BSA in PBS was added using the 

manufacturer recommended dilutions of 5 µL/1 x 106 cells and incubated at 4C for 25 

mins. Monochlorobimane (mBCL) (Sigma) was used at 20µM in PBS to stain cells for 

20 mins at 37C and acquired in the AmCyan channel. MitoSOX Red (ThermoFisher) 

was used at 1µM in PBS to stain cells for 20 mins at 37C and acquired in the PE 

channel. MitoTracker Deep Red (ThermoFisher) was used at 250nM in PBS to stain 

cells for 20 mins at 37C and acquired in the APC channel. Cells were washed with 

FACS buffer (PBS + 2% BSA + 0.01% sodium azide) and resuspended in 300µL FACS 

buffer for acquisition on a Fortessa flow cytometer (BD Biosciences) with 

405nm/488nm/640nm laser setup. Compensation was calculated using FACSDiva 

software and UltraComp beads (ThermoFisher) stained with indicated antibodies. Data 

was analyzed with FlowJo 10.6 (FlowJo, LLC) gating on live cells and measuring MFI 

values of indicated fluorophores versus DMSO control. 

Cell transfections 
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NHA and DIPG cells were transfected with a scramble (control) or LSD1 siRNA 

cocktail (Santa Cruz Biotechnology) using Lipofectamine RNAiMAX (ThermoFisher 

Scientific) with the standard protocol for 6-well plates. Cells were incubated for 48 hours 

then harvested for lysates and RNA. Knockdown was confirmed via western blot. DIPG 

IV were subjected to sequential transfection every 24h before harvesting at 48h using 

100nM of siRNA. NHA were subjected to one transfection at 10nM siRNA for harvesting 

at 48h. 

Western blotting 

 At least 1 x 106 cells were harvested with TrypLE and washed once with PBS, 

followed by lysis with RIPA buffer for at least 1 hour rotating at 4C. Lysates were spun 

at 12,000 RPM for 20 minutes at 4C to pellet debris. Protein content was measured via 

Bradford assay (BIO-RAD) with bovine serum albumin (BSA) diluted in PBS used to 

establish the standard curve. Absorbance was measured at 750nm on a SpectraMax 

Plus 384 plate reader (Molecular Devices). Equal amounts of protein were loaded on a 

polyacrylamide gel for sodium dodecyl sulfate-gel electrophoresis and run at 100V for 2 

hours. Proteins were transferred to polyvinylidene fluoride (PVDF) membranes via wet 

transfer at 100V for 1 hour. Membranes were blocked with 1% fish gelatin for 1 hour at 

room temperature. Antibodies were incubated overnight at 4C with gentle agitation. The 

next day, the membranes were washed with Tris-buffered saline solution containing 

Tween (TBST) and incubated with horseradish peroxidase–conjugated (HRP) 

secondary antibody (Cell Signaling Technology). Proteins were visualized by SignalFire 

ECL Reagent (Cell Signaling Technology) for 1 minute and imaged on a ChemiDoc 
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Touch (BIO-RAD). Images were evaluated with Image Lab software (BIO-RAD) and 

protein expression quantified with ImageJ (US National Institutes of Health). 

Statistical analysis 

GraphPad Prism 8.4.2 was used for all graphing and statistical analysis. Patient 

data was analyzed using Wilcoxon and Log-Rank tests for survival. RT-qPCR data was 

analyzed using ANOVA correcting for multiple comparisons by use of the False 

Discovery Rate (FDR) approach. Discovery was determined using the Two-stage linear 

step-up procedure of Benjamini, Krieger and Yekutieli, with Q = 1%. All other data was 

analyzed using T-tests correcting for multiple comparisons using the same FDR 

approach and cutoff. Comparisons were made to DMSO controls where appropriate or 

among each data set.  

Primer sequences 

Table 1. 

Primer Sequence 

SLAMF7 Forward AAGGGGAATGGCTGCTTTTG 

SLAMF7 Reverse CTCAATCCCATTCTTGCCCAAC 

GPR65 Forward CATCCCACCTAGGTCTCCCA 

GPR65 Reverse CACATCACTTCCCCCTCACC 

LCP1 Forward GCAGTTTGTCACAGCCACAG 

LCP1 Reverse TCATTGACCTTCTGGCCACC 

RAET1E Forward TGTGAAGCGCAGGTCTTCTT 

RAET1E Reverse AACAGGATGAATGCCCCCAG 
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4-1BB Forward TGCTTGTGAATGGGACGAAG 

4-1BB Reverse ACGTCAGCGCAAGAAAGAAG 

MICB Forward ATGAGGTGTTTGCTGCTCTG 

MICB Reverse TTTGCCCACATCCTGCATTC 

KYNU Forward TCAGTGGAGACCATCGACAG 

KYNU Reverse GCATTTGAGTTCAGCCGCAA 

ARHGDIB Forward GCCCAGGGTTTCCTCTTCAA 

ARHGDIB Reverse GGGTGCCTCTGTCTCTCAAC 

CTSS Forward TCCTACCCTGGATCACCACT 

CTSS Reverse TTCTTCACTGGTCATGTCTCC 

IL20RB Forward GCTGATGCAACATCTGGGTTT 

IL20RB Reverse TGCATATGTTGGAGCTGAGG 

LAT2 Forward TTGCAACAGTTCTTGGAAACCC 

LAT2 Reverse GTTGCCTCTTGTGATGCGTG 

IL18 Forward AAGATGGCTGCTGAACCAGT 

IL18 Reverse GAGGCCGATTTCCTTGGTCA 

OAS2 Forward AGCTCTTTACTTTCCCCTTGGTT 

OAS2 Reverse GGAAACAGACAGGACGTGGA 

PPIA Forward CCCACCGTGTTCTTCGACATT 

PPIA Reverse GGACCCGTATGCTTTAGGATGA 

HPRT1 Forward CCTGGCGTCGTGATTAGTGAT 

HPRT1 Reverse AGACGTTCAGTCCTGTCCATAA 

ACTB Forward CTGTGGCATCCACGAAACTA 
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ACTB Reverse CGCTCAGGAGGAGCAATG 
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Results 

Chapter 1: LSD1 inhibition as an immuno-stimulatory strategy in glioma 

This chapter is based upon:  

Cavan P Bailey, Mary Figueroa, Achintyan Gangadharan, Yanwen Yang, Megan M 

Romero, Bridget A Kennis, Sridevi Yadavilli, Verlene Henry, Tiara Collier, Michelle 

Monje, Dean A Lee, Linghua Wang, Javad Nazarian, Vidya Gopalakrishnan, Wafik 

Zaky, Oren J Becher, Joya Chandra. Pharmacologic inhibition of lysine specific 

demethylase-1 (LSD1) as a therapeutic and immune-sensitization strategy in pediatric 

high grade glioma (pHGG). Neuro-Oncology. https://doi.org/10.1093/neuonc/noaa058 

Use of the material is granted by the following copyright from Oxford University Press: 

“As part of the terms of the license agreement, authors may use their own 
material in other publications written or edited by themselves, provided that the 
journal is acknowledged as the original place of publication by Oxford University 
Press. Authors retain copyright of their Articles.” 

 

Background 

Pediatric high-grade gliomas (pHGGs) are pathologically diverse yet uniformly 

highly malignant central nervous system (CNS) cancers, with 5-year survival rates of 

<10% post-diagnosis. Surgery is often not possible due to tumor diffusion and the 

sensitive midline brain structure, which control crucial motor functions such as breathing 

and heartbeat. Radiotherapy is the standard of care, but survival benefits are slim with 

high risks of side effects and decreased quality of life during and after treatment (91). 

Immunotherapeutic approaches have had limited success due to the low mutational 

burden and immunosuppressive microenvironment of pediatric brain tumors, such that 

https://doi.org/10.1093/neuonc/noaa058
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adaptive immune interventions including checkpoint blockade are ineffective (92). 

Recent efforts to molecularly profile pHGGs have discovered conserved genomic 

mutations unique to the pediatric age range and anatomical locations (93). In particular, 

mutations in histone encoding genes (H3F3A, HIST1H3B) resulting in amino acid 

substitution of the epigenetically critical lysine residue (H3-K27M) are thought to drive 

early development of these tumors in multipotent CNS cells (94). As such, the World 

Health Organization (WHO) now recognizes these K27M tumors as separate entities in 

the glioma classification (95). 

The K27M histone mutations present a therapeutic opportunity for the use of 

epigenetic regulating drugs, in particular those that target chromatin-modifying proteins. 

Multiple publications have explored this idea, using inhibitors of histone deacetylases 

(HDACs) (96), demethylases (JMJD3/UTX) (97), methyltransferases (EZH2) (98), and 

chromatin readers (BET) (99) to demonstrate tumor regression in pre-clinical models. 

Clinically-translatable compounds exist to target all of these and indeed an ongoing 

clinical trial is testing the HDAC inhibitor panobinostat as a monotherapy 

(NCT02717455) (100). However, other chromatin modifiers have yet to be explored as 

therapeutic targets, and there is limited investigation into how the gene expression 

changes generated by these drugs can be used to augment pre-existing therapies.  

The histone demethylase LSD1 removes mono- and di-methyl marks from H3K4 

and H3K9 and shares structural homology with monoamine oxidases (MAOs). LSD1 is 

targeted by several drugs (63) and has thus far been therapeutically investigated in 

cancers including acute myeloid leukemia (83), sarcoma (60), and neuroblastoma (76). 

LSD1 inhibition has been shown to have an enticing therapeutic window that is selective 
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for cancer cells, in part through its disruption of oncogenic and onco-maintenance 

transcriptional programs (48, 72). Furthermore, the H3K4me1 histone mark regulated by 

LSD1 was seen to be enriched in intergenic regions of pHGG cells (99), suggesting that 

LSD1 may control access to enhancers of genes important in pHGG pathology. LSD1 

inhibitors can functionally target either the catalytic domain that mediates demethylation 

(47), or the scaffolding tower domain that interfaces with other proteins in epigenetic 

complexes (78), and it is currently unknown what phenotype these disparate inhibitors 

would produce in pHGG. Given the highly disrupted yet therapeutically sensitive 

epigenome of pHGGs, we sought to explore in this study whether LSD1 inhibition could 

be both cytotoxic to pHGG and generate transcriptional changes that would inform 

combination therapies.  

Our group previously published a report on use of a combination therapy of LSD1 

and HDAC inhibition to synergistically induce cell death in adult glioblastoma cell lines 

and patient-derived glial stem cells (54). In a follow-up study, we used RNA-Seq to 

explore how the HDAC/LSD1 inhibitor combination therapy produced gene changes in 

the p53 family members p63 and p73 (55). In our current study, we identify an LSD1-

induced immunogenic gene signature conserved in pHGG patients (101) that predicts 

longer survival. We further show that LSD1 inhibition is selectively cytotoxic to DIPG 

cells, and inhibitor-based induction of this gene signature augments innate immune 

reactivity against DIPG by boosting natural killer (NK) cell immunotherapy response in 

vitro and in vivo. 

Data 
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We previously performed RNA-Seq (55) on LN18 adult glioblastoma cells when 

LSD1 was knocked down with shRNA in order to explore the mechanism of their 

sensitivity to dual LSD1 and HDAC inhibition. In the LSD1 shRNA group alone, we 

applied a 1.5-fold change filter and analyzed the remaining genes with DAVID pathway 

analysis (Fig 3A). The 3rd-most significantly changed pathway was “immune response”, 

with 24 genes upregulated and downregulated by LSD1 knockdown compared to a 

scramble control. We sought to validate these gene changes in LN18 cells, and 

replicated LSD1 knockdown in the cells and confirmed knockdown with western blot. 

Expression of the 13 most upregulated genes was measured with RT-qPCR and we 

observed a significant increase (ANOVA, p<0.0001) in the gene expression signature 

with LSD1 knockdown (Fig 3B). This confirmed our RNA-Seq data that LSD1 controls 

expression of these genes in a glioblastoma cell line. Furthermore, this gene signature 

matches treatment of LN18 with the established LSD1 inhibitor tranylcypromine (TCP) 

(Fig 3B), and TCP treatment of LN18 compared with DIPG cells was non-significant (Fig 

3C) indicating concordance of these upregulated immune genes between pediatric and 

adult glioma in vitro models.  

To determine the significance of this signature to patient treatment, we next 

proceeded to probe a dataset of 247 pediatric high-grade glioma patients (Fig 3D). 

Expression of LSD1 was significantly lower in patients with high expression of our 

identified gene signature panel, suggesting that LSD1 may influence expression of 

these genes in pHGG patients (Fig 3E). We found our gene signature of immune 

response genes could predict significantly improved 5-year survival in all tumors (Fig 

3F). The overall benefit was driven by K27M midline (thalamus, cerebellum, spinal cord, 
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ventricles; n = 23) and WT hemispheric (cerebral hemispheres; n = 57) tumors; notably, 

this survival benefit did not extend to K27M brainstem (pons, midbrain, medulla; n = 49) 

tumors, and we lacked statistical power in WT brainstem (n = 9) and WT midline (n = 

14) tumor samples to make strong conclusions (Fig 3F).  

Further verification of LSD1’s ability to suppress these immune genes in pHGG 

patients is seen when a linear regression is plotted comparing LSD1 with individual 

genes from the gene signature. Because this data set filtered out low expressing genes, 

I could not perform this comparison for 5/13 genes from the signature (SLAMF7, MICB, 

RAET1E, ARHGDIB, and LAT2). The remaining 8 genes show consistent negative 

correlations with LSD1, indicating that higher expression of LSD1 may suppress 

expression of these genes. Notably, the correlation was weaker and non-significant for 

4-1BB, OAS2, and IL20RB, while Spearman and Pearson correlations were highly 

significant for the remaining 5 genes (Fig 4A). I also examined LSD1 as a solo marker 

of patient survival, comparing patient prognosis of the top 20% and bottom 20% 

expressors of LSD1, first in all pHGG patients and then segmenting by WT hemispheric 

and K27M brainstem. The remaining subsets did not have a large enough sample size 

to perform this analysis and generate valid insights. In all pHGG patients, LSD1 

expression does not predict survival benefit, and this also holds true for WT hemispheric 

pHGGs. Interestingly, K27M brainstem patients live significantly longer when LSD1 

expression is low (Fig 4B), suggesting that LSD1 may play a role in tumor growth in 

brainstem patients, but the LSD1 immune-signature survival benefits are only seen in 

WT hemispheric pHGG patients. 
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Fig 3. LSD1 immunogenic signature is predictive of survival benefit in pediatric high-

grade glioma patients. (A) RNA-Seq pathway analysis performed in LSD1 shRNA 

transduced LN18 cells. Immune response genes and associated fold changes are 

shown. (B) RT-qPCR of immune gene signature in LN18 cells with LSD1 shRNA or 

1mM TCP treatment for 24h analyzed by one-way ANOVA with FDR correction. (C) RT-

qPCR of immune gene signature in LN18, DIPG IV, and DIPG VI after 1mM TCP 

treatment for 24h analyzed by one-way ANOVA with FDR correction. (D) Heat map of 

pHGG patient exome data probed for LSD1 immune gene signature. (E) LSD1 

expression of patients expressing high and low levels of gene signature analyzed by 

unpaired T-test. (F) Survival curves of pHGG patient data subdivided by histone 

mutation and tumor location and analyzed by Log-Rank or Wilcoxon tests. * = p < 0.05, 

** = p < 0.01, **** = p < 0.0001, ns = not significant. At least 3 biological replicates were 

used for RT-qPCR experiments. 
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Fig 4. LSD1 expression significantly correlates with immune gene expression and 

patient survival in pHGG dataset. (A) Gene expression from pHGG patients plotted as 

LSD1 (x-axis) versus labeled immune genes (y-axis), with R-squared, slope equation, 

and correlation p-values presented for each comparison. N = 247 tumors with RNA-Seq 

data. (B) Survival curves of pHGG patients segmented by tumor location and LSD1 

expression level. * = p < 0.05 by Wilcoxon and Log-Rank tests.  
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In order to explore the potential of therapeutically triggering this gene signature, 

we profiled the potency of 3 irreversible catalytic LSD1 inhibitors (tranylcypromine, also 

known as TCP, GSK LSD1, and RN-1) and 2 reversible scaffolding LSD1 inhibitors (SP-

2509 and SP-2577). As we have previously published, LSD1 inhibition alone in adult 

glioblastoma cells does not potently reduce viability (54, 55). In pHGG cells, the same 

inhibitors display much greater potency that correlates with their specificity and 

sensitivity for inhibition of LSD1 over the related proteins LSD2, MAO-A, and MAO-B. 

We observed highly similar IC50s between the unique DIPG cell types for each LSD1 

inhibitor tested (Fig 5 A-C). While AlamarBlue screening is a sensitive assay for cell 

proliferation, it cannot determine if drugs are cytostatic or cytotoxic due to its reliance on 

metabolic activity. Therefore, we used trypan blue (membrane integrity) and PI stain 

(DNA fragmentation) assays to quantify cell death at the IC50s observed with 

AlamarBlue (TCP: ~1.5mM, GSK LSD1: ~400µM, RN-1: ~60µM, SP-2509/2577: 

~13µM). Cell death was selectively induced in DIPG cells over normal human 

astrocytes (NHA) beginning at 3 days post-treatment (Fig 5D). For neurosphere-forming 

DIPG XIII cells, we adapted another high-throughput technique to quantify cell death by 

use of the DNA-binding dye GelGreen and observed the same effects. In order to 

ascertain in vivo efficacy, luciferase labeled murine pHGG PKC-luc cells were implanted 

intracranially into NSG mice which were treated intraperitoneally (i.p.) four times weekly 

with vehicle, LSD1 catalytic (TCP and GSK LSD1), or LSD1 scaffolding (SP-2577) 

inhibitors.  Non-invasive imaging showed reduction of tumor burden in mice treated with 

GSK LSD1 (Fig 5E-F) but not TCP or SP-2577. GSK LSD1 provides an initial survival 
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benefit over vehicle control but this is not maintained (Fig 5G), likely due to adaptive 

resistance of the tumor to continued targeted therapy. 
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Fig 5. LSD1 inhibitors are growth inhibitory in vitro and in vivo and induce selective cell 

death in DIPG cells. (A) Dose response curves of LSD1 inhibitors in DIPG IV, (B) DIPG 

VI, (C) DIPG XIII, and (D) NHA measured using AlamarBlue after 120h treatment. Cell 

viability after 72 and 96h measured using trypan blue cell exclusion and analyzed by T-

test comparing with DMSO control using FDR correction. DNA fragmentation measured 

using propidium iodide on flow cytometry analyzed by T-test comparing with DMSO 

control using FDR correction. Cell death of DIPG XIII (C) measured using GelGreen 

fluorescent intensity in 96-well plate reader and analyzed by T-test comparing with 

DMSO control using FDR correction. (E) Images of orthotopic tumor luminescence in an 

NSG pHGG hemispheric mouse model. Mice are shown after 2 weeks of treatment and 

4 weeks after tumor implantation. (F) Quantification of tumor burden shown in (E). 

Vehicle group compared to GSK LSD1 group via T-test with FDR correction. (G) 

Survival curves of NSG pHGG mice at 100 days and 150 days. * = p < 0.05. At least 3 

biological replicates were used for all experiments. Error bars represent mean +/-SEM. 
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 We further profiled the on-target binding of our LSD1 inhibitor suite through 

assessment of the H3K4me2 mark and by use of the cellular thermal shift assay 

(CETSA). Western blotting in DIPG IV and VI lines treated with LSD1 inhibitors showed 

increased expression of the H3K4me2 mark consistently by GSK LSD1 in both lines 

(Fig. 6A). Using CETSA, we could determine if LSD1 is bound by various LSD1 

inhibitors in DIPG and NHA cells by heating live cells under treatment with candidate 

compounds and interrogating the thermostability of the target protein via western blot 

(Fig 6B). It was observed that all catalytic LSD1 inhibitors could bind LSD1 in all cell 

types, while results were less consistent with the scaffolding LSD1 inhibitor compounds 

(Fig 6C). We hypothesized the dose of SP-2509 and SP-2577 may be too low to 

thermostabilize LSD1, so we conducted dose response CETSAs with TCP as a positive 

control. We found a ~50% increase in binding in DIPG VI by raising doses of SP-2509, 

but no increase in binding above DMSO control with higher doses of SP-2577 in either 

DIPG cell type (Fig 6D). Given that we dosed up to 100 µM for the dose response 

CETSA, which is almost 10X the IC50 of the scaffolding inhibitors in DIPG cells, either 

the CETSA assay cannot capture the protein complex-disruption properties of the 

scaffolding compounds or there exists off-target effects, of which there is published data 

for rationale of the latter (80, 81). 
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Fig 6. LSD1 inhibitors alter histone methylation levels and thermostabilize LSD1 in 

DIPG and NHA cells. (A) Western blots of DIPG IV and VI cells treated with LSD1 

inhibitors for 24h and probed for H3K4me2 expression. (B) Representative western blot 

of CETSA probing LSD1 thermostability in DIPG VI cells. (C) Protein melt curves for 

LSD1 in different cell types. Each data point was normalized to beta-actin level and 

further normalized to 42C data point for each experimental condition. (D) Dose 

response CETSA for scaffolding inhibitors SP-2509/2577. LSD1 was destabilized at 

48C for all doses and DMSO control was set as 0% stability and 1mM TCP was set as 

100% stability. At least 3 biological replicates were used for all experiments. Error bars 

represent mean +/-SEM. 
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With sensitivity and on-target activity of LSD1 inhibition in DIPG established, we 

next treated cells with sub-cytotoxic doses of LSD1 inhibitors for 24 h and isolated RNA 

to measure expression of our immune gene signature. DIPG cells display a significant 

upregulation of the signature under treatment with irreversible catalytic LSD1 inhibitors, 

but no significant changes when treated with reversible scaffolding LSD1 inhibitors SP-

2509 and its clinical successor SP-2577 (Seclidemstat). This gene signature was also 

selective for DIPG, as the same treatment did not induce upregulation NHA cells (Fig 

7A-B). We confirmed this selectivity by using LSD1 siRNA in DIPG IV and NHA cells, 

where we observed upregulation in DIPG but not NHA, at comparable levels of LSD1 

knockdown (Fig 8). Several genes in the signature correspond to immune signaling 

receptors, so we next profiled protein expression of 3 innate immune receptors known 

to play roles in NK cell signaling (SLAMF7, MICB, and ULBP-4). Using flow cytometry, 

we found DIPG cells display differing baseline levels of these receptors, perhaps due to 

their mutational differences in histone alleles (H3.1 v. H3.3). Overall however, we could 

detect increased expression on live cells after LSD1 inhibitor treatment for 48h (Fig 7C).  
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Fig 7. Irreversible catalytic LSD1 inhibitors selectively generate immunogenic signature 

in DIPG cells. (A) RT-qPCR for immune gene signature performed on cells after 

treatment with indicated LSD1 inhibitors for 24h. Catalytic inhibitors (TCP, GSK LSD1, 

and RN-1) and scaffolding inhibitors (SP-2509/2577) are compared to matched NHA 

controls using one-way ANOVA with FDR correction. (B) RT-qPCR data re-plotted with 

individual genes and including siRNA treatment for 48h. Fold change compared to 

DMSO control analyzed via one-way ANOVA with FDR correction. (C) Median 

fluorescent intensity of indicated receptors after 48h of LSD1 inhibitor treatment. 

Matched species and fluorophore isotype controls used to measure background 

fluorescence. Fold change compared to DMSO control analyzed via one-way ANOVA 

with FDR correction.* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001, ns = 

not significant. At least 3 biological replicates were used for all experiments. Error bars 

represent mean +/-SEM. 
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Fig 8. Expression of LSD1 after siRNA transfection of NHA and DIPG IV. Quantification 

of 3 biological replicates plotted at left as measured using ImageJ. Representative blot 

presented on the right.  
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The above receptors function either as NKG2D ligands or self-ligating receptors, and 

stimulation through these receptors increases NK cell activity and lysis of target cells. 

Given our observed upregulation of these receptors under LSD1 inhibition, we 

hypothesized that NK cells would lyse target DIPG cells more readily upon LSD1 

inhibition. Fluorescently labeled DIPG IV and VI cells were incubated with effector 

human NK cells at various effector to target (E:T) ratios. Across 3 unique healthy blood 

donors from which we expanded NK cells, we could observe increases in lysis in 2 

DIPG lines when treated with catalytic LSD1 inhibitors TCP and GSK LSD1, but 

inconsistently under scaffolding LSD1 inhibition by SP-2509 (Fig 9A). We hypothesize 

discrepancies between DIPG IV and VI to be due to higher basal levels of ULBP-4 in 

DIPG VI and greater upregulation of ULBP-4 in DIPG VI after pre-treatment with SP-

2509 (Fig 7C). Notably, the lysis efficacy of expanded healthy human donor T-cells was 

much lower than NK cells, and could not be augmented by LSD1 inhibitor pre-treatment 

(Fig 9B). We aimed to correlate genetic biomarkers of NK lysis by probing our gene 

signature from matched co-culture samples, and observed strong positive trends for 4 

genes in DIPG IV (Fig 9C) and 2 genes in DIPG VI (Fig 9D). Unexpectedly, a negative 

correlation could be found for 4-1BB (Fig 9E), traditionally a T-cell stimulatory factor, 

which could indicate alternative function during NK cell engagement.  Mice implanted 

with PKC-HA cells in the brainstem of syngeneic C57BL/6 mice and treated with 

catalytic LSD1 inhibitors (Fig 9F) showed increased expression of the gene signature in 

neural tissue harvested when mice were moribund (Fig 9G). Given that adaptive 

resistance to GSK LSD1 was seen in our mouse model (Fig 5G), we combined GSK 

LSD1 with NK cell infusion to model enhancement of innate immunity after LSD1 
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inhibition in vivo. Mice treated with intraperitoneal GSK LSD1 and intracranial human ex 

vivo expanded NK cells had the greatest reduction (43%) in tumor burden from baseline 

compared to vehicle control, GSK LSD1 alone, or NK cells alone (Figs 9H+I).  GSK 

LSD1 alone did not exert single agent anti-tumor efficacy in this human xenograft 

model, which contrasts with our results in mouse orthotopic models, likely due to 

species mismatch.  However, this highlights the anti-tumor effect of the combination of 

GSK LSD1 and NK cells as particularly striking.   
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Fig 9. LSD1 inhibition upregulates innate immune receptors and sensitizes DIPG cells 

to NK cell lysis which correlates with unique genetic identifiers of response. (A) Lysis of 

target DIPG cells co-cultured with NK cells after 48h pre-treatment of target cells with 

LSD1 inhibitors (TCP 0.5mM, GSK LSD1 300μM, SP-2509 5μM). Treatments analyzed 

versus DMSO control using T-test with FDR correction. (B) Lysis of target DIPG cells 

co-cultured with T-cells after 48h LSD1 inhibitor pre-treatment. (C) DIPG IV RT-qPCR 

from matched co-culture experiments, genes with positive Pearson’s correlation R2 > 

0.80 are shown with 95% confidence intervals. (D) DIPG VI RT-qPCR from matched co-

culture experiments. (E) RT-qPCR from matched co-culture experiments, negative 

correlation with R2 > 0.80 shown with 95% confidence intervals. (F) Schematic of 

immunocompetent C57BL/6 PKC-HA brainstem mouse model. (G) RT-qPCR was 

performed on RNA extracted from PKC-HA mouse brains. Fold change is plotted versus 

PBS control. TCP and GSK LSD1 were compared to PBS via one-way ANOVA with 

FDR correction. (H) Images of orthotopic tumor luminescence in NSG DIPGIV-luc mice 

starting from day 0 prior to start of treatment. (I) Tumor burden of NSG DIPGIV-luc mice 

quantified (photons/sec/cm2) and analyzed for % change (delta) and linear regression 

(slope) between day 0 and day 21. * = p < 0.05 and ns = not significant. At least 3 

biological replicates were used for all experiments. Error bars represent mean +/-SEM. 
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  To further validate our finding that catalytic LSD1 inhibition can enhance NK cell 

lysis of DIPG in vitro and in vivo, we re-visited our patient data for analysis using 

CIBERSORT. We found that significant NK cell infiltration predicts increased survival for 

H3-WT hemispheric tumors, but significant CD8 T-cell infiltrate predicts slightly worse 

survival. Brainstem tumors benefited less from NK infiltrate, but significant NK presence 

still shows superior patient survival versus significant CD8 T-cells in the brainstem (Fig 

10A). We next investigated how already-present or ex vivo infused immune cells would 

respond to LSD1 inhibition and treated expanded NK and T-cells with a panel of 

chromatin-modifier inhibitors, including our LSD1 suite. As has been known (102), T-

cells are sensitive to HDAC inhibition, but are fairly resistant to LSD1 inhibition except at 

higher doses of the scaffolding inhibitors. Conversely, NK cells are resistant to HDAC 

inhibition but highly sensitive to scaffolding LSD1 inhibitors, with no live cells detected 

even at 500 nM doses of SP-2509/2577 (Fig 10B). Catalytic LSD1 inhibitors are 

comparatively non-perturbing, with the IC50s against NK cells being 2-10X higher than 

doses needed to induce our gene signature. Given our data showing the scaffolding 

LSD1 inhibitors are cytostatic but not cytotoxic to NHA cells, we profiled the metabolism 

of both NK and T-cells after LSD1 inhibitor treatment, as active metabolism of nutrients 

has been shown to be crucial to anti-tumor effects of both cell types. Strikingly, the 

scaffolding LSD1 inhibitors completely suppress the metabolism of NK cells, rendering 

them metabolically quiescent but still alive at 48h post-treatment (Fig 10C). Collectively, 

this data suggests that catalytic LSD1 inhibitors may be used at therapeutic doses to 

induce increased NK cell reactivity without harming the NK cells directly. 
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Fig 10. NK cell tumor infiltration is predictive of survival benefit in pediatric high-grade 

glioma patients and catalytic LSD1 inhibitors are non-perturbing to mature NK and T-

cells. (A) CIBERSORT analysis of pHGG patient data sub-analyzed by tumor location 

and immune cell type. Survival curves show significant vs. non-significant presence of 

indicated immune cell in patient tissue. (B) Purified expanding T-and NK cells treated 

with indicated chromatin-modifier inhibitors for 120h and measured using AlamarBlue. 

(C) XF Mito Stress Test performed on NK and T-cells after 48h of LSD1 inhibitor 

treatment (TCP 0.5mM, GSK LSD1 300μM, RN-1 25μM, SP-2509/2577 5μM) and 

treatments compared to DMSO control analyzed by T-test with FDR correction. * = p < 

0.05. At least 3 biological replicates or unique donors were used for all experiments. 

Error bars represent mean +/-SEM. 
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Chapter 2: Effects of LSD1 inhibition on cytotoxic immune cells 

Background 

Cellular therapies are rapidly being investigated for applications in infectious 

disease, autoimmunity, and oncology. Numerous clinical trials are testing the 

combination of infused cell therapies with targeted therapies, including small molecules 

and antibodies, with the aim of increasing efficacy of the cell product at the disease site. 

Epigenetic drugs targeting chromatin modifiers are among these potential combinations, 

with available agents for a range of targets including acetylated histone readers (BETs), 

histone deacetylases, methyltransferases, and demethylases (103). The histone H3K4 

demethylase LSD1 has been investigated as a target in Ewing sarcoma and AML, 

where LSD1 inhibition induces differentiation of AML cells (104) and blocks fusion 

protein transcriptional targets in sarcoma (60). Among tumors with low mutational 

burdens, it has been proposed that epigenetic inhibitors can make these cancers more 

visible to the immune system by activating gene expression programs (105). Recently, it 

has been demonstrated that LSD1 inhibition can accomplish this by stimulating T-cell 

immunity in epithelial cancers (88, 89) and innate immunity in pediatric brain tumors 

(106).  

Available LSD1 inhibitors operate through two distinct binding mechanisms: 

irreversible catalytic site inhibitors and reversible scaffolding inhibitors. Both types of 

inhibitors can block the demethylase function, but scaffolding inhibitors also interfere 

with LSD1 in complex with other epigenetic regulators (39). LSD1 presence is critical for 

normal hematopoietic development in the terminal erythroid and megakaryocytic 

compartments (27, 28), but there remains little information on the effects of LSD1 
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inhibitors directly on mature cytotoxic T- and NK cells. In a combination treatment 

scheme, small molecule LSD1 inhibitors will also encounter infused immune cells in 

peripheral blood and the local tumor microenvironment. Ergo, it is crucial to understand 

how LSD1 inhibitors of differing potencies and binding mechanisms may affect T- and 

NK cells. Epigenetic regulation of NK cells by chromatin modifiers has previously been 

linked to methyltransferase EZH2 (107, 108), demethylases KDM5A (109) and JMJD3 

(110), and the deubiquitinase MYSM1 (111). Notably, Cribbs et al included a small 

molecule epigenetic compound screen for IFN-gamma secretion from NK cells, but only 

catalytic LSD1 inhibitors (TCP and GSK LSD1) were included at low doses (20µM and 

0.5µM, respectively). 

I have previously published that the scaffolding LSD1 inhibitor SP-2509 and its 

clinical successor SP-2577 potently suppress the viability and metabolism of NK cells 

(106). LSD1 has previously been implicated in metabolic regulation in adipose tissue 

(112) and red blood cells (113), but I was the first to show this effect in NK cells. In this 

chapter with NK cells kindly provided by Dr. Dean A. Lee, M.D., Ph.D., I further expand 

upon my previous findings to uncover an induced oxidative stress response that is 

unique to NK cells, compared to T-cells, and unique to scaffolding LSD1 inhibitors 

compared to catalytic inhibitors. I am the first to link LSD1 to redox response in NK 

cells, and I further delineate the critical role of glutathione (GSH) in NK cell cytotoxic 

response, monitoring of which is critical for use of NK cells as a treatment in infectious 

disease and oncology. 

Data 
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LSD1 inhibitors can bind to different sites of the LSD1 structure and elicit unique 

phenotypes in cells. Irreversible catalytic inhibitors TCP, GSK LSD1, and RN-1 form 

covalent adducts in the demethylation site of LSD1 and block LSD1 activity on histones 

and other target proteins (Fig 11A). Scaffolding inhibitor SP-2509 acts through a 

potential allosteric mechanism (79) and can disrupt LSD1 in complex with CoREST (39) 

in addition to the demethylation function (Fig 11A). I previously observed that 

scaffolding LSD1 inhibitors were more potent against NK cells compared to T-cells, into 

the nanomolar range for NK cells, using the AlamarBlue assay (106). Here I replicated 

doses used to induce NK reactivity in pediatric brain tumors, against NK cells to 

simulate co-administration and measured viability using amine-reactive dyes and flow 

cytometry. Catalytic inhibitors did not reduce viability of NK cells (q = n.s.), but 

scaffolding inhibitors were notably potent at doses 5-200X lower than catalytic inhibitors 

(Fig 11B, q < 0.001). T-cell viability also was reduced by scaffolding LSD1 inhibitors, but 

they displayed much greater resistance (Fig 11C, q = 0.004; Fig 11D, q < 0.01). I next 

examined if NK cell sensitivity to scaffolding LSD1 inhibitors was dose and time 

dependent and found that higher doses and longer incubation times amplified the 

cytotoxic effect (Fig 11E, q < 0.001). My previous publication also found metabolic 

suppression unique to scaffolding LSD1 inhibitors in NK cells (106). I was able to 

replicate these findings, observing that scaffolding LSD1 inhibitors abolish all oxidative 

phosphorylation in NK cells (Fig 11F, * = q < 0.01) and reduce OXPHOS to a much 

lesser degree in T-cells (Fig 11G, * = q < 0.01). 
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Figure 11. Scaffolding LSD1 inhibitors reduce viability and suppress metabolism in NK 

cells. (A) LSD1 inhibitors used and their respective properties. (B) Viability of NK cells 

after 48h treatment of LSD1 inhibitors (TCP: 1mM, GSK LSD1: 100µM, RN-1: 25µM, 

SP-2509: 5µM, SP-2577: 5µM) using amine-reactive viability dye analyzed via flow 

cytometry. (C) Viability of T-cells using the same method. (D) Viability of NK and T-cells 

under SP-2509 or SP-2577 treatment compared using unpaired t-test. (E) Dose 

response of SP-2509 and SP-2577 in NK cells at indicated time points using amine-

reactive viability dye. (F) Basal and maximal OXPHOS of NK cells after 48h treatment 

with indicated LSD1 inhibitors measured using XF Mito Stress Test on a Seahorse 

XFe96 analyzer. (G) Basal and maximal OXPHOS of T-cells using the same method. * 

= q < 0.01. All conditions are compared to DMSO control via t-test with FDR correction. 

At least 3 independent experiments are displayed (+/- SEM), sourced from 2 unique NK 

cell donors and 1 T-cell donor. 
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Given the extreme mitochondrial dysfunction induced by scaffolding LSD1 

inhibitors, I used other molecular probes to examine mitochondrial health in NK cells. 

Under scaffolding but not catalytic LSD1 inhibitor treatment, I observed a potent drop in 

healthy mitochondria (MitoTracker) and rise in mitochondrial superoxide production 

(MitoSOX) in NK cells (Fig 12A, * = q < 0.01). Notably, this effect could not be replicated 

in T-cells (Fig 12B, q = n.s.). When normalized to number of healthy mitochondrial, 

superoxide production was over 30X higher in NK cells compared to T-cells under 

scaffolding LSD1 inhibitor treatment (Fig 12C, * = q < 0.01). Interestingly, glycolysis was 

also reduced only in NK cells under scaffolding LSD1 inhibitor treatment, therefore 

metabolic effects of this compound class are not limited to mitochondria (Fig 12D, * = q 

< 0.01). We next investigated if drops in oxidative phosphorylation were dose 

dependent with SP-2509 and SP-2577 and found that even low doses (~315nM for 48h) 

could significantly reduce basal and maximal respiration in NK cells (Fig 12E, q < 

0.001). However, glycolysis reduction was dose dependent under SP-2509 and SP-

2577 treatment (Fig 12F, * = q < 0.01). 
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Figure 12. NK cells produce uncontrolled mitochondrial superoxide when treated with 

scaffolding LSD1 inhibitors. (A) NK cells treated for 48h with indicated LSD1 inhibitors 

were stained with MitoTracker Deep Red and MitoSOX Red combined with viability dye. 

Median fluorescent intensity (MFI) of APC channel (MitoTracker) and PE channel 

(MitoSOX) are plotted from live cells only. (B) T-cell MitoTracker and MitoSOX data 

using the same method. (C) NK and T-cell MitoSOX MFI divided by MitoTracker MFI 

indicates mitochondrial superoxide relative to healthy mitochondria number. (D) Basal 

glycolysis of NK and T-cells treated for 48h with LSD1 inhibitors measured using XF 

Mito Stress Test. (E) OCR dose response of SP-2509 and SP-2577 in NK cells treated 

for 48h and measured using XF Mito Stress Test. (F) Basal glycolysis dose response of 

SP-2509 and SP-2577 in NK cells treated for 48h and measured using XF Mito Stress 

Test. * = q < 0.01. All conditions are compared to DMSO control via t-test with FDR 

correction. Marked Seahorse data points indicate all treatment conditions are significant 

versus DMSO control. At least 3 independent experiments are displayed (+/- SEM), 

sourced from 2 unique NK cell donors and 1 T-cell donor. 
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While mitochondrial function was not dose dependent in NK cells, but viability 

was, I performed dose responses examining mitochondrial number, superoxide 

production, and glutathione levels in NK cells treated with SP-2509 and SP-2577. I 

found superoxide production was time and dose dependent, but this could be blocked 

by co-supplementation with exogenous glutathione (Fig 13A, * = q < 0.05). Treatment 

with scaffolding LSD1 inhibitors reduced glutathione in a dose dependent manner, 

potentially explaining the uncontrolled mitochondrial superoxide levels. Here I also 

showed that glutathione co-supplementation blocks this reduction with SP-2509 and 

SP-2577 treatment (Fig 13B, * = q < 0.05). Mitochondrial number was also dose 

dependent, but interestingly not variable by time or glutathione supplementation, 

suggesting a rapid and oxidative stress-independent mechanism of mitochondrial 

damage by SP-2509 and SP-2577 (Fig 13C, q = n.s.). I next attempted to rescue 

mitochondrial oxidative phosphorylation and glycolysis by co-supplementation with 

antioxidants, both cell-wide (2.5mM GSH and 25µM Trolox) and mitochondrial-targeted 

(10nM mitoquinol (MQ) and 1nM SKQ1) (114, 115). I found that none of the antioxidants 

could restore mitochondria function (Fig 13D, q < 0.001) or glycolysis (Fig 13E, * = q < 

0.05), further suggesting metabolic defects caused by SP-2509 and SP-2577 are not 

linked to reactive oxygen species (ROS). 
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Figure 13. Scaffolding LSD1 inhibitor-induced oxidative stress in NK cells is dose 

dependent and can be rescued with glutathione supplementation, but metabolism 

defects cannot. (A) MitoSOX dose response of SP-2509 and SP-2577 in live NK cells at 

indicated time points and rescued using 2.5mM glutathione ethyl ester (GSHee). (B) 

Glutathione dose response of SP-2509 and SP-2577 in live NK cells measured using 

mBCL and rescued using 2.5mM GSHee. (C) MitoTracker dose response of SP-2509 

and SP-2577 in live NK cells and attempted rescued using 2.5mM GSHee. (D) 

OXPHOS of NK cells treated with scaffolding LSD1 inhibitors for 48h and attempted 

rescue with cell-wide antioxidants (GSHee and Trolox) and mitochondrial-targeted 

antioxidants (mitoquinol (MQ) and SKQ1) measured using XF Mito Stress Test. (E) 

Basal glycolysis of NK cells treated with scaffolding LSD1 inhibitors for 48h using the 

same method and measured using XF Mito Stress test. * = q < 0.01. All conditions are 

compared to DMSO control via t-test with FDR correction. Marked Seahorse data points 

indicate all treatment conditions are significant versus DMSO control. At least 3 

independent experiments are displayed (+/- SEM), sourced from 2 unique NK cell 

donors. 
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I concluded by exploring functional determinants of NK cell biology, primarily their 

receptor phenotype and ability to lyse target cells. Multicolor flow cytometry revealed 

that only scaffolding LSD1 inhibitors reduce activating receptors on NK cells (Fig 14A, * 

= q < 0.05). Next, I co-incubated LSD1 inhibitor pre-treated NK cells with labeled K562 

target cells to assess their cytotoxic function. Here I observed that all LSD1 inhibitors 

reduced NK lysis ability, with SP-2509 and SP-2577 being by far the most potent (Fig 

14B, * = q < 0.05). I hypothesized that glutathione co-supplementation could restore NK 

function, and indeed I found that viability was rescued by GSH (Fig 14C, * = q < 0.05). 

Furthermore, low doses of SP-2509 did not compromise lytic function, suggesting the 

observed metabolic suppression did not hinder NK cytotoxicity (Fig 14D, * = q < 0.05). 

Concurrent 2.5mM GSH supplementation could rescue cytotoxic functions from near 

zero at high doses of SP-2509 after 48h, indicating that target cell killing by NK cells is 

strongly regulated by redox balance under scaffolding LSD1 inhibitor treatment (Fig 

14D, * = q < 0.05). My proposed model of scaffolding LSD1 inhibitors in NK cells is 

metabolic suppression at low doses and an independent pro-oxidative induction at high 

doses that potently blunts NK cell cytotoxic function (Fig 14E). 
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Figure 14. NK cell ligand expression and cytotoxicity are impaired by scaffolding LSD1 

inhibitors, but viability and cytotoxicity can be rescued with glutathione supplementation. 

(A) NK cells treated for 48h with indicated LSD1 inhibitors display reduced activating 

ligand expression. (B) NK cell cytotoxicity against K562 target cells is reduced by 48h 

pre-treatment with indicated LSD1 inhibitors. (C) Viability dose response of SP-2509 

and SP-2577 in NK cells treated with and without 2.5mM GSHee supplementation. (D) 

NK cell cytotoxicity against K562 target cells after 48h pre-treatment with SP-2509, with 

and without GSHee supplementation. (E) Working model of scaffolding LSD1 inhibitor 

effects on NK cell metabolism, redox state, and function. * = q < 0.01. All conditions are 

compared to DMSO control via t-test with FDR correction. At least 3 independent 

experiments are displayed (+/- SEM), sourced from 2 unique NK cell donors. 
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As a potential mediator of metabolic and redox mechanism in NK cells, 

preliminary data was obtained regarding the expression of the LSD1/CoREST/GFI1 

complex and histone methylation status in NK and T-cells during LSD1 inhibitor 

treatment. After 48h of treatment, NK cells lost expression of LSD1 (Fig 15A), CoREST 

(Fig 15B), and GFI1 (Fig 15C) under treatment with scaffolding LSD1 inhibitors, but not 

catalytic inhibitors. Preliminary data indicates this effect is not recapitulated in T-cells, 

but more replicates are required to confirm this. Interestingly, NK cells exhibited stable 

H3K4me2 under catalytic inhibitor treatment, but not scaffolding inhibitors. Meanwhile, 

T-cells have much lower basal H3K4me2 compared to NK cells, and this mark 

accumulates under potent LSD1 inhibitor treatment (Fig 15D). 
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Figure 15. LSD1 complex expression is dysregulated in NK cells under scaffolding 

LSD1 inhibitor treatment. (A) Western blot of LSD1 in NK (n = 3) and T-cells (n = 1) 

after 48h incubations of LSD1 inhibitors (TCP: 1mM, GSK LSD1: 100µM, RN-1: 25µM, 

SP-2509: 5µM, SP-2577: 5µM). (B) Western blot of GFI1 in NK cells (n = 3) after 48h 

incubations of LSD1 inhibitors. (C) Western blot of CoREST in NK (n = 3) and T-cells (n 

= 1) after 48h incubations of LSD1 inhibitors. (D) Western blot of H3K4me2 in NK (n = 

1) and T-cells (n = 1) after 48h incubations of LSD1 inhibitors. Quantifications are 

normalized to actin for each condition and then to DMSO for each cell type. 
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Chapter 3: Immune microenvironment of pediatric high-grade gliomas (pHGGs) 

Background 

Pediatric high-grade gliomas (pHGGs) are aggressive brain tumors in children 

with poor prognoses and limited therapeutic options. A frequent mutation in pHGG 

subtypes are amino acid substitutions in histone tails, specifically histone H3.1 and 

H3.3. Lysine-to-methionine (H3.1/3.3-K27M) mutations occur in brainstem and midline 

tumors almost exclusively, and indicate the worst prognosis among pHGGs. 

Hemispheric tumors arise in the cerebral cortex and are often H3-WT but sometimes 

feature H3.3-G34R/V mutations, which have worse prognosis than H3-WT but 

significantly better than H3.1/3.3-K27M (101). Radiotherapy is the standard of care for 

brainstem tumors, while hemispheric tumors may add chemotherapy or targeted 

therapy in combination with radiotherapy depending on detected mutations (116). There 

have been no significant advances in pHGG therapy and these cancers are in 

desperate need of inventive and efficacious modalities. 

Clinical trials have recently began investigating immuno-modulating therapies for 

pHGG, including vaccines (NCT01130077, NCT03334305, NCT03615404), immune 

checkpoint blockade (NCT03690869), and cytokine therapy (NCT03330197). For these 

interventions to work properly, there must be cytotoxic immune cells present either in 

the tumor, or in the peripheral blood that can traffic to the tumor site, to be stimulated 

and become more active. These trials are not designed to account for mutational and 

anatomical differences among pHGG patients, which may play a role in efficacy of 

immunotherapies if immune infiltration differs by these factors. At present, there have 

been limited investigations on the immune status of pHGGs that include hemispheric 
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and brainstem tumors, and how different immune cell subtypes may contribute to 

patient prognosis.  

Within this chapter, with assistance from Dr. Linghua Wang in the Genomic 

Medicine department of MD Anderson, I use the computational method CIBERSORT to 

investigate a patient dataset of 247 pHGGs, which includes both H3-WT hemispheric 

and H3-K27M brainstem gliomas. I find that distributions of immune cells differ between 

these tumor locations and that improved patient survival can be predicted by immune 

cell types. Significant presence of regulatory T-cells, memory B-cells, eosinophils, and 

dendritic cells indicate better patient prognosis for hemispheric tumors, but not 

brainstem tumors. I further find that brainstem tumors, compared to hemispheric tumors, 

have greater levels of detectable cytokines and growth factors known to suppress 

immunity, including IL-6, IL-10, and VEGF. I correlate patient survival with 

immunosuppressive genes IL10 and VEGF, implicating secreted factors as important 

across all pHGGs and potentially identifying a new therapeutic target network. 

Data 

I first compared distributions of immune cells that could be detected by the 

CIBERSORT platform and their differences between hemispheric and brainstem 

tumors. I found more detectable amounts of CD8 T-cells, NK cells, CD4 T-regs, M1 

macrophages, eosinophils, and activated mast cells in hemispheric tumors, but more 

detectable amounts of activated dendritic cells (DCs) and neutrophils in brainstem 

tumors (Fig 16A). I next examined if significant immune infiltrate of each cell type held 

prognostic value for patient survival outcomes. In the lymphoid compartment, I found 

that memory B-cells (Fig 16B), CD4+ regulatory T-cells (Fig 16C, p = 0.01), and 
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activated DCs (Fig 16D) suggest improved patient survival in hemispheric pHGGs when 

patients had significant presence of each cell type. Notably, this did not hold true for 

brainstem DIPG patients, who showed no survival benefit for these cell types.  
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Figure 16. Immune cell infiltrates differ by tumor location and can predict survival benefit 

in hemispheric pHGG. (A) Distribution of CIBERSORT output for immune cell types and 

segmented by tumor location. (B) Survival curves of hemispheric and brainstem pHGG 

patients with detectable amounts of memory B-cells. (C) Survival curves of hemispheric 

and brainstem pHGG patients with detectable amounts of regulatory T-cells. (D) 

Survival curves of hemispheric and brainstem pHGG patients with detectable amounts 

of activated dendritic cells. 
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I next examined if cell types in the myeloid compartment were prognostic and 

varied by pHGG tumor location. I again found that brainstem tumors never benefit from 

immune infiltrate, but positive associations were found in hemispheric tumors for 

eosinophils (Fig 17A, p = 0.05), M1 macrophages (Fig 17B), and activated mast cells 

(Fig 17C). Interestingly, neutrophils were negatively prognostic for both hemispheric 

(Fig 17D, p = 0.03) and brainstem (Fig 17D, p = 0.01) locations. I compared 

hemispheric to brainstem tumors using the average patient survival for each type, 

aiming to profile which immune cells types could predict long-term survivors, or the 

“long-tail” seen in immunotherapy regimens (117). Here I found significant differences 

by tumor location (* = p < 0.05) for NK cells, regulatory T-cells, dendritic cells, memory 

B-cells (Fig 18A), and eosinophils, monocytes, and M1 macrophages (Fig 18B). 

Cytotoxic CD8 T-cells and M2 macrophages could predict small numbers of long-term 

survivors, but the differences were non-significant, and detectable presence of these 

cells pushed survival below the average for hemispheric pHGGs.  
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Figure 17. Myeloid immune infiltrates indicate improved survival for hemispheric pHGG 

except for neutrophils. (A) Survival curves of hemispheric and brainstem pHGG patients 

with detectable amounts of eosinophils. (B) Survival curves of hemispheric and 

brainstem pHGG patients with detectable amounts of M1 macrophages. (C) Survival 

curves of hemispheric and brainstem pHGG patients with detectable amounts of 

activated mast cells. (D) Survival curves of hemispheric and brainstem pHGG patients 

with detectable amounts of neutrophils. 
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Figure 18. Immune infiltration only correlates with long-term survivors in hemispheric 

pHGG. (A) All detectable lymphoid cell types plotted as hemispheric v. brainstem by 

patient survival. (B) All detectable myeloid cell types plotted as hemispheric v. 

brainstem by patient survival. Average survival calculated using all patients regardless 

of detectable CIBERSORT output. * = p < 0.05 by unpaired t-test, no multiple 

comparison correction; ns = no significance. 
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Given the complete lack of survival benefit in brainstem tumors across several 

immune cell types, I hypothesized the local tumor microenvironment may be 

immunosuppressive and lacking in inflammatory signals. I investigated the RNA-Seq 

data used for CIBERSORT and plotted immunosuppressive genes segregated by tumor 

location. Brainstem tumors uniformly expressed more immunosuppressive genes, with 

significant differences (Fig 19A, * = p < 0.05) found for IDO2, IL10, FASLG, IL6, 

VEGFA, and VEGFC. I next sought to examine if I could detect secretory cytokines from 

immune cells within the bulk RNA-Seq data and if they differed by tumor location. Using 

patients with significant NK cell infiltrate as a model, I found hemispheric tumors 

expressed significantly more TGFβ1, but less IFNG and GZMB, than brainstem tumors 

(Fig 19B, * = p < 0.05). TGFβ family members are well known to suppress NK function 

(118), but NK cells are able to confer survival benefit in hemispheric tumors (106), 

suggesting NK activating signals are expressed highly enough in hemispheric pHGG to 

compensate. For tumors with significant NK infiltrate, the immunosuppressive genes 

GZMB and SLAMF6 correlate significantly with survival in hemispheric tumors (Fig 19C, 

p < 0.05), and no immunosuppressive genes correlated in brainstem tumors. When 

examining all patients together, I found that IL10, FGL2, VEGFB, and VEGFC were 

significantly correlated with hemispheric pHGG survival (Fig 19D, p < 0.05). In 

brainstem tumors, IL10 and IDO2 were significantly correlated (Fig 19E, p < 0.05), 

suggesting that IL10 may be a common immunomodulator across pHGG subtypes. 
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Figure 19. Brainstem pHGG exhibit greater immunosuppression which can be 

correlated with survival. (A) Gene expression of immunosuppressive factors from all 

patients regardless of detectable CIBERSORT output. (B) Gene expression of secreted 

cytokines from patients with significant NK infiltration by CIBERSORT. (C) Expression v. 

survival plot of immunosuppression genes with significant Spearman correlations (p < 

0.05) in hemispheric pHGG patients with significant NK infiltration by CIBERSORT. (D) 

Expression v. survival plot of immunosuppression genes with significant Spearman 

correlations (p < 0.05) in all hemispheric pHGG patients. (E) Expression v. survival plot 

of immunosuppression genes with significant Spearman correlations (p < 0.05) in all 

brainstem pHGG patients. * = p < 0.05 by unpaired t-test, no multiple comparison 

correction. 
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Discussion 

Chapter 1 

 This chapter identifies LSD1 as a novel cytotoxic target and epigenetic immune-

suppressor in pHGG. There have been several published epigenetic therapeutic targets 

in DIPG as mentioned in the introduction, but I am the first to explore combination 

immunotherapy with epigenetic therapy. NK cell infusion has been previously shown to 

be effective against human and mouse adult glioblastoma in pre-clinical models (119). 

The NK expansion method used in this chapter can be monitored in vivo via imaging 

(120), and furthermore has been shown to be efficacious and trackable in 

medulloblastoma mouse models (121). NK cell therapy using expanded cells 

independent of donor is a true “off-the-shelf” immunotherapy product (122), and has 

been shown to be safe in phase 1 clinical trials (123), including pediatric brain tumor 

patients (124). The knowledge base is in place for a translatable clinical trial of catalytic 

LSD1 inhibitors combined with expanded NK cells, but challenges remain to address 

the PK/PD of available LSD1 inhibitors for neuro-oncology applications, as well as 

effective delivery methods of NK cells to the tumor site. 

 While I am not the first to explore boosting anti-tumor immunity through LSD1 

modulation (88, 89), I am the first to compare catalytic inhibitors versus scaffolding 

inhibitors, as well as the use of LSD1 inhibition in a non-epithelial-derived cancer. An 

intriguing result is the efficacy of a potent catalytic LSD1 inhibitor, GSK LSD1, 

compared to a non-selective catalytic inhibitor (TCP) and a potent scaffolding inhibitor 

(SP-2577). GSK LSD1 shows potential as a monotherapy in vivo, however I observed 

acquired resistance, which is not unexpected with targeted therapy in gliomas (125). 
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This result shows that GSK LSD1 may have favorable PK properties to the brain, 

though another study saw otherwise (61), but since they used a medulloblastoma model 

it is possible GSK LSD1 can reach hemispheric but nor cerebellar tumors. Interestingly 

both TCP and SP-2577 were worse than my control arm, suggesting potential toxicity at 

our doses, though this should be confirmed with more mice per group and a separate 

mouse model. We also used an older formulation of SP-2577, so a newer version may 

prove more efficacious (source: meeting with Salarius Pharmaceuticals).  

Other noteworthy LSD1 inhibitors have emerged since I began this study, and 

they warrant testing in pHGG models (Table 2). Others have observed that catalytic and 

scaffolding LSD1 inhibitors differ in their anti-cancer efficacy (126), therefore 

mechanism of action must be kept in mind for future studies in pHGG. Two catalytic 

inhibitors independently developed by Takeda and RIKEN show potential as neuro-

oncology therapeutics by their ability to treat brain-resident T-ALL (127) and alter mouse 

neurological function (128). The potent catalytic inhibitor ORY-1001 shows excellent 

activity in AML (83) and some solid tumors (62, 129-131), and Oryzon is developing 

LSD1 inhibitors for neuropsychiatric applications and therefore may be open to funding 

a brain tumor pre-clinical study. For direct cytotoxicity of pHGG via scaffolding inhibitors, 

a company in Sweden is developing brain-penetrant inhibitors with a similar allosteric 

mechanism to SP-2509 and SP-2577. Beactica AB showcased their BEA-17 compound 

at AACR 2019 (abstract #3843), reporting µM accumulation in the brain, efficacy in PDX 

glioblastoma mouse models, and in vitro synergy with HDAC inhibitors. The DRD2-

antagonist ONC201 may present a logical combination therapy with NK cells for pHGG, 

as it was shown pre-clinically to enhance NK infiltration of tumors (132) and modulate  
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Table 2. Next-generation LSD1 inhibitors for pHGG therapy 

Drug Inventor/owner Binding Significance 
to pHGG+NK 

Reference 

ORY-1001 Oryzon 
Genomics SA 

Catalytic; TCP-
derivative 

May be 
alternative to 
GSK LSD1; 
GSK 
abandoned 
clinical 
development 

(80, 83, 
84) 

TAK-418 Takeda Presumed catalytic; 
TCP-derivative 

Corrects 
neurogenesis 
in mice 

Zhang et 
al., 
BioRxiv 
pre-print 

S2157 RIKEN Presumed catalytic; 
TCP-derivative 

Brain penetrant 
in mouse 
model 

(127) 

CPI-242 Constellation 
Pharmaceuticals 

Covalent 
styrenylcyclopropane 

Unique 
mechanism, 
unknown 
phenotype in 
pHGG 

(133, 134) 

BEA-17 Beactica AB Scaffolding Preclinical 
efficacy in 
glioma mouse 
models 

(135) 

EPI-111/112 EpiAxis 
Therapeutics 

non-catalytic; 
peptidomimetic 

Unique 
mechanism, 
unknown 
phenotype in 
pHGG 

(136) 

BMS-90011 Bristol Myers 
Squibb 

Unknown; unique 
structure 

Phase II trial 
underway in 
combination 
w/nivolumab in 
solid tumors 

Clinical 
trials.gov 
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metabolism of gliomas (137). Furthermore, ONC201 may present durable single-

agent activity against glioblastomas and H3-K27M pediatric gliomas after conclusion of 

its clinical trials (138-141). I also suggest that future studies of NK cells in pHGG models 

utilize standard-of-care chemotherapy and radiation, which have been shown pre-

clinically to synergize with NKG2D signaling (142) and enhance CAR-T infiltration via 

lymphodepletion (143), and clinically to correlate with survival benefit and NK infiltration 

after dendritic cell vaccination (144). 

Chapter 2 

My work is the first to show therapeutic inhibition of LSD1 via scaffolding 

inhibitors initiates functionally relevant pro-oxidative effects in NK cells. While the direct 

mechanism of LSD1 redox regulation in NK cells remains to be discovered, LSD1 has 

been linked to oxidative stress in two previous reports. In studies of macrophage 

resistance to hydrogen peroxide, Tokarz et al found that inhibiting LSD1 with SP-2509 

increases cell viability and reduces superoxide, the opposite of my observations (145). 

The mechanism in macrophages was driven by short lived (<9hrs) enhancement of 

SOD2 transcription by reversal of demethylation of H3K4me2 induced by LPS 

stimulation. They did not compare SP-2509 to other LSD1 inhibitors with catalytic 

binding nor did they examine glutathione levels. Their findings demonstrate the lineage-

specific effects of scaffolding LSD1 inhibitors, as I observed between NK and T-cells. 

Mishra et al observed that silencing of LSD1 with siRNA in retinal endothelial cells 

increased H3K4me1/H3K4me2 at the promoter of GCLC, the key enzyme in GSH 

synthesis that binds glutamate to cysteine (146). They also saw increased binding of 

NRF2 at the GCLC promoter under LSD1 siRNA along with increased GCLC 
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expression. This is again opposed to my observation of LSD1 preserving glutathione 

levels, however no LSD1 inhibitors were used in their investigation so it cannot be said 

if binding sites on LSD1 play a role or if the differential response is due to tissue type. 

Another possible explanation for GSH loss under LSD1 inhibition is downregulation of 

glucose transporters, which has previously been observed with LSD1 knockdown (147). 

Reductions in glucose import would dampen the pentose-phosphate pathway, leading 

to reduced NADPH production and an inability to recharge GSH from its oxidized GSSG 

form. Potential NK cell dependence on cystine importer SLC7A11 expression would 

make them sensitive to glucose deprivation via disulfide accumulation, already a noted 

vulnerability in cancer cells (148, 149). The above findings may be potential 

mechanisms connecting LSD1 to glutathione in NK cells, but I am the first to observe 

key differences using a thorough suite of catalytic and scaffolding LSD1 inhibitors. 

GSH has been previously demonstrated to play an important role in immune cell 

function, including detailed mechanisms in T-cells and correlative nutritional studies in 

NK cells. Kurniawan et al recently reported an elegant mouse model of GSH-deficiency 

in regulatory T-cells, where GSH controls serine metabolism through ASCT1 expression 

and subsequently activates mTOR/SMAD3/FoxP3 signaling to endow Tregs with their 

suppressive capabilities (150). GSH was also shown to be critical for cytotoxic T-cell 

responses via a NFAT-dependent glycolysis mechanism (151), but this has been found 

to be dispensable in NK cells (152). Mitochondrial metabolism has also been suggested 

to be critical to NK function. Intratumoral hypoxia was shown to promote tumor escape 

from innate immunity potentially by suppression of NK OXPHOS (153), and fatty acid 

uptake by NK cells in obese patients reduced their OXPHOS and lytic function (154). 
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Herein I have shown NK cells maintain high cytotoxicity despite markedly suppressed 

mitochondrial OXPHOS, and that GSH can rescue cytotoxic function independently of 

oxygen consumption or lactic acid production. Notably, neither of these reports 

investigated glutathione or oxidative stress, but an earlier report found obese mice had 

defective leukocyte lysis and lowered GSH levels (155). This phenotype could be 

rescued by adding eicosapentaenoic and docosahexaenoic acids to the diet, suggesting 

dietary interventions can be used to combat immune cell oxidative stress. 

Given my findings that scaffolding LSD1 inhibition depletes GSH and blunts NK 

activity, it may be possible for oral supplementation of GSH or its precursors to be 

combined with LSD1 inhibitors in patients. A previous report showed cysteine and 

theanine supplementation can boost NK cytotoxicity in humans, but the authors did not 

measure glutathione levels despite cysteine being the rate-limiting amino acid in GSH 

synthesis (156). In other human trials, oral GSH supplements could boost cytotoxicity 

against K562 cells (157, 158), and low glutathione in blood tracked with low cytotoxicity 

in autistic patients (159), however these studies are flawed as whole PBMCs were used 

for the cytotoxicity assays instead of isolated NK cells. In vitro NK functions can also be 

augmented against infectious M. tuberculosis (160), and rescued after treatment by 

tri/dibutylin (161) or reactive nitrogen metabolites (162), by GSH supplementation. The 

natural compound adenanthin produces similar cytotoxicity defects and ROS 

accumulation in NK cells at similar concentrations to scaffolding LSD1 inhibitors (163). 

While adenanthin does not deplete glutathione nearly as potently as SP-2509/2577, NK 

cell cytotoxicity could be rescued with N-acetylcysteine which can replenish GSH levels. 

Adenanthin is a proposed peroxiredoxin 1 (PRDX1) inhibitor, which reduces hydrogen 
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peroxides and alkyl hydroperoxides, and may be a downstream mediator of the LSD1 

inhibitor effect on GSH loss and cytotoxicity suppression (164). 

Adding to the above previous knowledge, my data highlights the crucial role of 

GSH in innate immune responses and defines a new role for LSD1 and potential 

complex members in maintaining NK cell redox status. The tower domain of LSD1 and 

its interactions with CoREST may play a mechanistic role in this phenomenon, given 

that catalytic LSD1 inhibition does not phenocopy scaffolding LSD1 inhibition. RNA-Seq 

data shows that expanded NK cells maintain expression of LSD1, CoREST, HDAC1, 

HDAC2, and GFI1 compared to naïve NK cells from the same donor (manuscript in 

preparation by Dean A. Lee, M.D., Ph.D.), indicating the LSD1 complex may remain 

important for NK cell oxidative balance in patients treated with LSD1 inhibitors. By 

linking antioxidants to NK cell lytic ability independent of metabolism, I propose that 

future investigations of LSD1 inhibition and NK cell therapy efficacy incorporate 

oxidative stress as an investigative endpoint. 

Chapter 3 

I have uniquely identified hemispheric tumors as immune-modulated vs. 

brainstem tumors in collective pHGG patient data. I also implicate the tumor 

microenvironment and secreted cytokines as mediators of the lack of survival benefit 

from immune infiltrate in brainstem pHGG. Unanswered questions remain regarding 

roles of histone mutations vs. anatomical location in these disparate immune 

phenotypes. I lacked statistical power to compare H3-WT brainstem, H3-K27M midline, 

and H3-G34R/V hemispheric tumors to their larger cohort mates. These tumors exist, 
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but are rare, and therefore engineered mouse models may be able to examine 

differences in immune infiltrates in a controlled study. 

A handful of previous publications have investigated neuro-oncology immune 

infiltrates using a combination of computational and live tissue methods, as well as 

cohorts of adult glioblastoma, pediatric gliomas, or a mixture of the two. Tang et al 

recently published an immune risk score (IRS) based upon CIBERSORT data in cohorts 

of adult glioblastoma (165). In their analysis, they found low numbers of activated NK 

cells correlated with poor patient prognosis, matching our observations in hemispheric 

pHGG (106). However, they also found that significant infiltration of memory B-cells, 

activated dendritic cells, and M1 macrophages were negatively prognostic, the opposite 

of our observations. They also did not report on eosinophils, neutrophils, or regulatory 

T-cells, possibly because these datasets did not report significant infiltration of these 

cell types. For single gene correlations, they found IDO and GZMB to be negatively 

prognostic with regards to their IRS score. This was again opposite of my observations, 

however I correlated expression directly with patient survival, not risk score. Other 

reports have shown distinct phenotypes of immune cells present in adult gliomas 

compared to pediatric (166) which may explain these observational differences. 

Bockmayr et al developed their own immune signature algorithm to analyze a 

dataset of over 1,000 samples that included both adult glioma and pHGG (167). Their 

analysis found that H3-WT gliomas had a significant enrichment in endothelial gene 

signatures compared to H3-mutated pHGGs, suggesting increased vascularization of 

H3-WT tumors. This hypothesis is being investigated using mouse models of brainstem 

and hemispheric pHGG (168). They also found that tumors rich in antigen-presenting 
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cells (APCs), such as dendritic cells and helper T-cells, had a favorable prognosis if the 

tumor also contained cytolytic cells (CD8 T-cells and NK). H3-WT tumors in this cohort 

contain 6-7X more adult gliomas than pHGGs, and the authors did not separate these 

cases in their analyses. However, by examining H3-G34R/V pHGGs compared to H3-

K27M pHGGs, I can make partial conclusions based upon tumor location in pediatric 

patients from this data. H3-G34R/V tumors presented much higher proinflammatory 

signaling compared to H3-K27M, and tumors with a diffuse intrinsic pontine glioma 

(DIPG, aka brainstem pHGG) diagnosis followed the same trend when compared to 

anaplastic astrocytoma and glioblastoma from the hemispheres. However, I cannot rule 

out the contribution of the H3-G34R/V mutation in these observed phenotypes 

compared to H3-WT hemispheric pHGG. 

Lieberman et al used both gene expression as well as IHC and functional assays 

to assess immune infiltrate in pediatric tumors exclusively, allowing direct comparisons 

of DIPG and hemispheric pHGG (169). I confirmed their observations that DIPG 

express lower amounts of TBFβ1 but higher amounts of VEGFα compared to pHGG. 

Their overarching hypothesis was that lack of immunosurveillance in DIPG was 

responsible for the low number of immune infiltrates, particularly T-cells. However, I did 

not find that increased presence of dendritic cells correlated with improved survival in 

brainstem pHGG patients. Furthermore, it has been shown that DIPG patients produce 

tumor-specific T-cells for the K27M antigen (170), suggesting that tumor 

microenvironment and trafficking of cytotoxic leukocytes plays a larger role. Adaptive 

tumor immunity in pHGG may be a candidate for anti-CD40 therapy, given that my 

paradoxical finding of massive survival benefit from CD4 T-regs was previously 
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observed in checkpoint inhibitor-refractory triple-negative breast cancer (TNBC) mouse 

models and melanoma patients (171). 

Collectively, this data combined with my findings suggests brainstem pHGGs 

possess a harshly immunosuppressive microenvironment lacking in inflammatory 

signals (166, 167, 169), potentially explaining why immune infiltrate in these tumors is 

never positively prognostic compared to hemispheric pHGGs. It should be noted that 

local neuroinflammation caused by infused CAR-T therapy was shown to be fatal in 

mouse models (172), indicating that caution must be used when attempting to stimulate 

cytokines in brainstem pHGGs. Another cogent hypothesis is that vascular differences 

exist between these tumor locations (167, 168, 173), preventing the influx of immune 

cells to the tumor site. Going forward, immunotherapeutic modalities for pHGG will need 

to consider tumor location when designing new interventions. I suggest that hemispheric 

pHGGs may respond well to vaccines, checkpoint blockade, and macrophage depletion, 

while brainstem pHGG will likely benefit more from carefully titrated adoptive cell 

therapies, epigenetic modulation, and new surgical delivery techniques. 

Future directions 

Catalytic LSD1 inhibitors combined with NK cell infusion presents a promising 

new therapeutic modality for pHGG, but more pre-clinical exploration would be helpful 

before a clinical trial is initiated. Our mouse models of pHGG were incomplete in terms 

of exploring hemispheric versus brainstem tumor locations and can be improved. We 

did not observe good engraftment of PKC-HA cells in the brainstem (~50%), and PKC-

HA cells also did not recapitulate our gene signature in vitro (data not shown). As such, 

they may not be an appropriate model to study immune interactions in brainstem pHGG 
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after LSD1 inhibition. An immunocompetent H3-K27M brainstem pHGG model was 

recently developed by St Jude Children’s Hospital and may be both easier to work with 

and recapitulate human DIPG biology more accurately (174). Xenografting of human 

DIPG cells into NSG mouse brainstems should also be attempted, along with usage of 

convention-enhanced delivery to the pons (96, 175), as a comparison to systemic 

delivery of inhibitors and immune cells (172).  

The newly developed LSD1 inhibitors explored above can be tested for ability to 

activate the gene signature and cause selective cell death. Testing of the orally 

bioavailable version of GSK LSD1, GSK2879552, is also warranted. Further exploration 

of the mechanism of enhanced NK lysis of DIPG by LSD1 inhibition should examine the 

functions of SLAMF7, RAET1E, and MICB by blocking the cognate SLAMF7 and 

NKG2D receptors on NK cells in co-culture experiments. The negative correlation of 4-

1BB gene expression with NK lysis is intriguing and should be confirmed with improved 

antibodies to detect 4-1BB protein on DIPG cells after LSD1 inhibition. This finding also 

may indicate other members of the TNF family of receptors, including CD40, OX40, 

CD27, and GITR, have influence on NK lysis of DIPG. 

The artificial antigen-presenting cell (aAPC) expanded NK cells are easy to work 

with and safe, but do not incorporate cellular engineering that is being explored in CAR-

T research. Dr. Katayoun (Katy) Rezvani at MD Anderson has published exciting clinical 

trial results of CAR-NK cells modified to secrete interleukin-15 (176), which I have 

shown is a potent cytokine that stimulates and sustains NK and CD8+ T-cells in vivo 

(177). Her lab has also shown pre-clinical efficacy of engineered NK cells that lack 

suppressive receptors in glioblastoma models (source: internal MD Anderson seminar; 
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Shaim et al., BioRxiv pre-print), and a recent publication by another group supports 

another portion of their NK engineering methodology (178). It should be noted the 

Rezvani lab NK cells are expanded from cord blood CD34+ hematopoietic progenitor 

cells, rather than from mature NK cells from adult peripheral blood. It is unknown what 

the efficacy of these cord blood-derived NK cells are against DIPG, or how they may 

respond to LSD1 inhibitors. Their CAR-NK research is now being developed in 

collaboration with Takeda Pharmaceuticals, whom also developed brain-penetrant 

LSD1 inhibitors (T-448/TAK-418) and may be ideal partners for a pHGG LSD1+NK 

project. 

The function of LSD1 in NK cell metabolism and redox needs further exploration 

to fully define the mechanism. It is not known whether catalytic LSD1 inhibitors also 

reduce GSH in NK cells and if this is the cause of their cytotoxicity defect. Furthermore, 

to implicate GSH loss in viability/metabolism/cytotoxicity, NK cells can be expanded in 

cystine-free media or treated with BSO/cystine-degrading enzymes (explored in the 

addendum section) to block GSH synthesis. Another control would be to use 

CRISPR/Cas9 to mutate domain interfaces or remove LSD1 entirely from NK cells, and 

observe if the metabolic and lytic defects manifest. These experiments would aid in 

identifying any potential off-target effects of LSD1 inhibitors in NK cells. It has been 

shown that SP-2509 induces protein instability in LSD1 (79), but this was not explored 

for CoREST or GFI1 in their paper. Cycloheximide chase and proteasome inhibition 

experiments on the LSD1 complex in NK cells would determine if this effect is 

conserved, along with qPCR for the corresponding genes to explore transcriptional 

regulation. If the loss of detectable protein is due to proteasomal degradation, a dose 
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response would explore if loss of the LSD1 complex tracts with loss of cytotoxic 

function. Finally, chromatin-immunoprecipitation sequencing (ChIP-Seq) could be 

employed to identify what genes may lose LSD1 complex member binding in NK cells 

under LSD1 inhibition. 

CIBERSORT analysis uncovered new aspects of immune infiltrate in pHGG 

patient data, but it is only an inferential computational technique. Ideally, my findings 

would be followed up with a comprehensive study of pHGG tissue samples, with IHC 

and IF slide sections looking for these immune cell types. By scoring patient tissue it 

could be directly compared to the CIBERSORT estimates of prognostic benefit. 

However, this is challenging as the RNA-Seq data used is the largest comprehensive 

pHGG dataset that includes gene expression data. Other datasets only have genomic 

sequencing, copy number, or methylation information that cannot be used for 

CIBERSORT or similar techniques. There is also not a large collective tissue bank of 

pHGG owing to the rarity of these tumors and inconsistencies in tissue collection and 

processing among medical centers. Despite these limitations, a small, focused 

validation study would be helpful to confirm my findings.  
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Fig 20. Summary figure of dissertation discoveries.   
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Addendum 

Proteasome inhibitors and cystine balance 

My rotation project in the Chandra lab in spring 2015 was a follow-up to the 

thesis work of a recent Ph.D. graduate at the time, Christa A. Manton. Aims of her 

project were to understand the mechanisms and efficacy of proteasome inhibitors in 

glioblastoma. One of the interesting observations of her work was that supplementation 

of cells with N-acetylcysteine (NAC) massively reduced cell death induction by 

proteasome inhibition (179). This was confirmed by a separate group using patient-

derived glioblastoma cells (180). Importantly, Dr. Manton showed that NAC 

supplementation raised glutathione (GSH) levels, but GSH supplementation could not 

recapitulate the cell death rescue phenotype as NAC could. This suggests that available 

cysteine plays roles outside of glutathione generation that can affect cell death signaling 

under proteasome inhibition.  

For my rotation project, we worked with Dr. George Georgiou at the University of 

Texas at Austin, who had recently developed a recombinant enzyme the degrades free 

cystine, dubbed cyst(e)inase. We hypothesized that depletion of cysteine may sensitize 

glioma cells to proteasome inhibitors, with the hope of using very low doses to achieve 

a synergistic effect. I began by profiling the sensitivity of adult glioma and pediatric 

DIPG cells to proteasome inhibitors after 48h drug treatment (Fig 21A). Bortezomib was 

the most potent with IC50s less than 10nM in LN18 and DIPG IV; interestingly DIPG VI 

and XIII were uniformly quite resistant to proteasome inhibition, with IC50s >100nM. I 

next tested cyst(e)inase as a single agent against DIPG cells, where I observed no 

viability reduction but a dose-dependent drop in growth for DIPG IV with an IC50 of 
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~300nM after 48h (Fig 21B). I next assessed the primary function of cyst(e)inase by 

measuring glutathione (GSH) levels, as cysteine is the rate-limiting step for GSH 

synthesis. Buthionine sulfoximine (BSO) was used a positive control as it inhibits the 

enzymatic linking of cysteine to glutamate in GSH synthesis. As a rescue control, I used 

GSH ethyl ester (GSHee), a cell permeable form of GSH. A dose-dependent reduction 

in GSH was seen after 48h, with 100nM cyst(e)inase being equivalent to 1mM BSO (Fig 

21C). Use of 2mM GSHee could rescue GSH levels back to baseline even with 100nM 

cyst(e)inase, demonstrating specificity of the enzyme for cysteine in cells. Combination 

of proteasome inhibitors and cyst(e)inase in LN18 cells did not show enhancement of 

cell death after 48h treatment (Fig 21D). However, DIPG IV showed cell death 

enhancement at 10nM doses of carfilzomib after 48h treatment (Fig 21E). This was 

shown to be synergistic, and higher doses of both carfilzomib and cyst(e)inase induced 

lower CI values and stronger synergy (Fig 21F). Cell cycle analysis showed that DIPG 

IV cells in the G2/M phase were preferentially killed by the combination treatment after 

48h (Fig 21G). 
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Figure 21. Cyst(e)inase depletes glutathione and has moderate synergy with carfilzomib 

in DIPG IV cells. (A) Dose response curves for viability of 3 proteasome inhibitors in 

adult GBM (LN18) and 3 pediatric DIPG lines. (B) Dose response of cyst(e)inase in 

DIPG IV for viability and growth. (C) GSH assay for glutathione level after dosing with 

cyst(e)inase in LN18 and DIPG IV. (D) Viability of LN18 cells dosed with combinations 

of proteasome inhibitors and cyst(e)inase. (E) Viability and growth of DIPG IV cells 

dosed with combinations of carfilzomib and cyst(e)inase. (F) Synergy calculations of 

viability for DIPG IV treated with carfilzomib and cyst(e)inase. Viability values were 

entered into CalcuSyn software (Biosoft) and combination analysis was run to generate 

CI values. >1 is considered antagonistic, <1 is considered synergistic. (G) Cell cycle plot 

of DIPG IV treated with 10nM carfilzomib and 25 or 50nM cyst(e)inase. * = p < 0.05 via 

t-test with multiple comparison correction. Cell cycle p-values are unpaired t-tests. 
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In conclusion, my data shows that some DIPG cells maintain the sensitivity to 

proteasome inhibitors that was observed by Dr. Manton in her adult glioblastoma cells. I 

could also confirm that cyst(e)inase depletes GSH in a dose-dependent manner in 

DIPG cells. While cyst(e)inase did not induce cell death as a single agent, it was a 

potent inhibitor of cellular proliferation. Combination treatment of DIPG IV cells with 

cyst(e)inase and carfilzomib was synergistic for cell viability, and preferentially depleted 

cells in G2/M phase of the cell cycle. This suggests that cell death may occur during 

mitosis and lack of cystine may be important for cell division. While this result is 

interesting, the therapeutic window for this synergism is narrow, mainly occurring at 

viabilities around the IC50 of the proteasome inhibitors. Despite this, further testing of 

the cyst(e)inase as a therapeutic for gliomas is warranted given it has been used in 

prominent studies as an anti-cancer agent against prostate, breast, chronic lymphocytic 

leukemia (181), and pancreatic (182, 183) cancers. Furthermore, it was shown that 

metabolic catastrophe can enhance the effect of proteasome inhibitor marizomib 

against DIPG, at least in part by depletion of nicotinamide adenine dinucleotide (NAD+) 

by combination therapy with HDAC inhibitors (184).  

A critical oversight of their paper was the strong induction of the pentose-

phosphate pathway (PPP) under combination treatment with panobinostat and 

marizomib. They also observed reductions in GSH and increases in GSSG, but could 

not rescue viability with NAC; however, they used an incredibly low dose of 50µM NAC, 

which must be used in the millimolar range to produce more GSH. A high GSSG/GSH 

ratio also can suggest glutathione cannot be recharged by NADPH normally generated 

by the PPP. NADPH levels were observed to be reduced under combo treatment, so 
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despite high expression of PPP enzymes, normal metabolites are not produced (184). 

Glucose is the PPP substrate shared with glycolysis, and glycolysis was also reduced 

under combination treatment, suggesting glucose availability via glucose transporters 

(GLUT1-4) may be affected by this treatment. I would hypothesize that ROS induction 

by pano+marizomib treatment triggers upregulation of the PPP to supply more NADPH 

for GSH recharge, but glucose cannot be imported, leaving the cells under oxidative 

stress that might be rescued with exogenous glutathione or NAC (at an appropriate 

dose). The authors did not measure ROS in this manuscript, and it has been shown that 

NAD+ supplementation can boost antioxidant defenses in cells (185).  
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